{"title":"Mixed \n \n \n L\n p\n \n $L^p$\n estimates for transforms of noncommutative martingales","authors":"Adam Osękowski","doi":"10.1112/blms.13184","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo><</mo>\n <mi>p</mi>\n <mo><</mo>\n <mspace></mspace>\n <mi>q</mi>\n <mo><</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1<p<\\, q<\\infty $</annotation>\n </semantics></math>. The paper is devoted to the study of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>q</mi>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </mrow>\n <annotation>$L^q\\rightarrow L^p$</annotation>\n </semantics></math> estimates for transforms of noncommutative martingales, under the assumption that the transforming sequence takes values in <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>r</mi>\n </msup>\n <annotation>$L^r$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>r</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mi>p</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$1/r=1/p-1/q$</annotation>\n </semantics></math>. This goes beyond the usual context of <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$p=q$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>=</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$r=\\infty$</annotation>\n </semantics></math> studied so far in the literature. The obtained constants are of optimal order at the endpoints, in addition the approach allows to obtain sharp values in the range <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>⩽</mo>\n <mn>2</mn>\n <mo>⩽</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$p\\leqslant 2\\leqslant q$</annotation>\n </semantics></math>. The proof rests on real interpolation-type arguments for martingale transforms, which are of independent interest.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"96-114"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13184","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let . The paper is devoted to the study of estimates for transforms of noncommutative martingales, under the assumption that the transforming sequence takes values in , . This goes beyond the usual context of and studied so far in the literature. The obtained constants are of optimal order at the endpoints, in addition the approach allows to obtain sharp values in the range . The proof rests on real interpolation-type arguments for martingale transforms, which are of independent interest.