Mixed L p $L^p$ estimates for transforms of noncommutative martingales

IF 0.8 3区 数学 Q2 MATHEMATICS
Adam Osękowski
{"title":"Mixed \n \n \n L\n p\n \n $L^p$\n estimates for transforms of noncommutative martingales","authors":"Adam Osękowski","doi":"10.1112/blms.13184","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>&lt;</mo>\n <mi>p</mi>\n <mo>&lt;</mo>\n <mspace></mspace>\n <mi>q</mi>\n <mo>&lt;</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1&lt;p&lt;\\, q&lt;\\infty $</annotation>\n </semantics></math>. The paper is devoted to the study of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>q</mi>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </mrow>\n <annotation>$L^q\\rightarrow L^p$</annotation>\n </semantics></math> estimates for transforms of noncommutative martingales, under the assumption that the transforming sequence takes values in <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>r</mi>\n </msup>\n <annotation>$L^r$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>r</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mi>p</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$1/r=1/p-1/q$</annotation>\n </semantics></math>. This goes beyond the usual context of <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$p=q$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>=</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$r=\\infty$</annotation>\n </semantics></math> studied so far in the literature. The obtained constants are of optimal order at the endpoints, in addition the approach allows to obtain sharp values in the range <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>⩽</mo>\n <mn>2</mn>\n <mo>⩽</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$p\\leqslant 2\\leqslant q$</annotation>\n </semantics></math>. The proof rests on real interpolation-type arguments for martingale transforms, which are of independent interest.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"96-114"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13184","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let 1 < p < q < $1<p<\, q<\infty $ . The paper is devoted to the study of L q L p $L^q\rightarrow L^p$ estimates for transforms of noncommutative martingales, under the assumption that the transforming sequence takes values in L r $L^r$ , 1 / r = 1 / p 1 / q $1/r=1/p-1/q$ . This goes beyond the usual context of p = q $p=q$ and r = $r=\infty$ studied so far in the literature. The obtained constants are of optimal order at the endpoints, in addition the approach allows to obtain sharp values in the range p 2 q $p\leqslant 2\leqslant q$ . The proof rests on real interpolation-type arguments for martingale transforms, which are of independent interest.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信