Tailoring Bimetallic Pt/Pd Cryogels for Efficient Ethanol Electro-Oxidation

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Hadir Borg, Dániel Zámbó, Patrick Bessel, Daniel Kranz, Marina Rosebrock, Franziska Lübkemann-Warwas, Nadja C. Bigall, Dirk Dorfs
{"title":"Tailoring Bimetallic Pt/Pd Cryogels for Efficient Ethanol Electro-Oxidation","authors":"Hadir Borg,&nbsp;Dániel Zámbó,&nbsp;Patrick Bessel,&nbsp;Daniel Kranz,&nbsp;Marina Rosebrock,&nbsp;Franziska Lübkemann-Warwas,&nbsp;Nadja C. Bigall,&nbsp;Dirk Dorfs","doi":"10.1002/celc.202400552","DOIUrl":null,"url":null,"abstract":"<p>Cryogels made of colloidal nanoparticles (NPs) are a unique material class with a high specific surface area and tunable microstructure. Flash freezing of the nanoparticle building blocks and subsequent freeze-drying of the gels, the so-called cryoaerogelation, allows significant control over morphology, stability and improved electrocatalytic performance. In the present work, the first bimetallic Pt/Pd cryogel films of mixed Pt and Pd NPs are prepared in different molar ratios. High-resolution microscopic and spectroscopic characterization techniques are applied to confirm the final Pt : Pd ratio besides the distribution of nanoparticles throughout the cryogel structure. Scanning electron microscopy (SEM) images of the different prepared cryogel films show a cellular to dendritic superstructure regardless of the Pt and/or Pd composition in a highly reproducible manner. Elemental analysis shows homogenous distribution of Pt and Pd NPs at the microscale for all samples. Since the prepared materials are of utmost importance for catalytic applications, their electrocatalytic activity toward ethanol oxidation reaction (EOR) is investigated. Fine-tuning the concentration of the building blocks, the structure, thickness, and composition of the porous coatings enables high electrocatalytic activity to be achieved. Cryogel thin films with an atomic ratio of 1 : 4 Pt : Pd have the highest electrocatalytic activity for EOR.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400552","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400552","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Cryogels made of colloidal nanoparticles (NPs) are a unique material class with a high specific surface area and tunable microstructure. Flash freezing of the nanoparticle building blocks and subsequent freeze-drying of the gels, the so-called cryoaerogelation, allows significant control over morphology, stability and improved electrocatalytic performance. In the present work, the first bimetallic Pt/Pd cryogel films of mixed Pt and Pd NPs are prepared in different molar ratios. High-resolution microscopic and spectroscopic characterization techniques are applied to confirm the final Pt : Pd ratio besides the distribution of nanoparticles throughout the cryogel structure. Scanning electron microscopy (SEM) images of the different prepared cryogel films show a cellular to dendritic superstructure regardless of the Pt and/or Pd composition in a highly reproducible manner. Elemental analysis shows homogenous distribution of Pt and Pd NPs at the microscale for all samples. Since the prepared materials are of utmost importance for catalytic applications, their electrocatalytic activity toward ethanol oxidation reaction (EOR) is investigated. Fine-tuning the concentration of the building blocks, the structure, thickness, and composition of the porous coatings enables high electrocatalytic activity to be achieved. Cryogel thin films with an atomic ratio of 1 : 4 Pt : Pd have the highest electrocatalytic activity for EOR.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信