How to give a spider a heart attack: Evaluating cardiac stress reactions of Trichonephila and Argiope spiders

IF 1.6 4区 农林科学 Q2 ENTOMOLOGY
Andrew K. Davis, Christina Vu
{"title":"How to give a spider a heart attack: Evaluating cardiac stress reactions of Trichonephila and Argiope spiders","authors":"Andrew K. Davis,&nbsp;Christina Vu","doi":"10.1111/phen.12463","DOIUrl":null,"url":null,"abstract":"<p>All animal species, from arthropods to vertebrates, must deal with occasional stressors in their lives, though most research on this has been focused on vertebrates. Meanwhile, our understanding of stress reactions in arthropod species like spiders is nascent. In the United States, a non-native orb-weaving spider, <i>Trichonephila clavata</i> (‘jorō’ spider), is spreading as is its already-established cousin in the United States, <i>T. clavipes</i> (golden silk spider). Prior study has revealed how these two species have a unique behavioural reaction to physical stressors, whereby they remain in a thanatosis state for a prolonged period compared with other species. Here, we investigate the physiological stress reactions of these <i>Trichonephila</i> spiders by evaluating how each species' dorsal vessel contractions (heart rates) become elevated after being subjected to a non-lethal stressor. For comparison, we also evaluate two similarly-sized orb weavers, <i>Argiope aurantia</i> (garden spider) and <i>A. trifasciata</i> (banded garden spider). We record baseline heart rates of inactive, resting, spiders in our lab, then restrain them under an electronic, ‘optocardiographic’, sensor for 10 min, to record their ‘stressed’ heart rates. <i>Argiope aurantia</i> has a pronounced heart rate elevation, for reasons unknown. We observe that all spider heart rates increase during restraint, though each has a species-specific pattern of elevation over time under restraint. Notably, heart rates of both <i>Trichonephila</i> spiders are less variable under stress, since they tend not to struggle during restraint. Meanwhile, both <i>Argiope</i> spiders frequently struggle, leading to marked fluctuations in cardiac output. The stress reactions of <i>Trichonephila</i> spiders could be characterized as ‘even-tempered’, which may factor into their ability to live in habitats with frequent disturbances.</p>","PeriodicalId":20081,"journal":{"name":"Physiological Entomology","volume":"50 1","pages":"38-47"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/phen.12463","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/phen.12463","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

All animal species, from arthropods to vertebrates, must deal with occasional stressors in their lives, though most research on this has been focused on vertebrates. Meanwhile, our understanding of stress reactions in arthropod species like spiders is nascent. In the United States, a non-native orb-weaving spider, Trichonephila clavata (‘jorō’ spider), is spreading as is its already-established cousin in the United States, T. clavipes (golden silk spider). Prior study has revealed how these two species have a unique behavioural reaction to physical stressors, whereby they remain in a thanatosis state for a prolonged period compared with other species. Here, we investigate the physiological stress reactions of these Trichonephila spiders by evaluating how each species' dorsal vessel contractions (heart rates) become elevated after being subjected to a non-lethal stressor. For comparison, we also evaluate two similarly-sized orb weavers, Argiope aurantia (garden spider) and A. trifasciata (banded garden spider). We record baseline heart rates of inactive, resting, spiders in our lab, then restrain them under an electronic, ‘optocardiographic’, sensor for 10 min, to record their ‘stressed’ heart rates. Argiope aurantia has a pronounced heart rate elevation, for reasons unknown. We observe that all spider heart rates increase during restraint, though each has a species-specific pattern of elevation over time under restraint. Notably, heart rates of both Trichonephila spiders are less variable under stress, since they tend not to struggle during restraint. Meanwhile, both Argiope spiders frequently struggle, leading to marked fluctuations in cardiac output. The stress reactions of Trichonephila spiders could be characterized as ‘even-tempered’, which may factor into their ability to live in habitats with frequent disturbances.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological Entomology
Physiological Entomology 生物-昆虫学
CiteScore
2.80
自引率
6.70%
发文量
21
审稿时长
>12 weeks
期刊介绍: Physiological Entomology broadly considers “how insects work” and how they are adapted to their environments at all levels from genes and molecules, anatomy and structure, to behaviour and interactions of whole organisms. We publish high quality experiment based papers reporting research on insects and other arthropods as well as occasional reviews. The journal thus has a focus on physiological and experimental approaches to understanding how insects function. The broad subject coverage of the Journal includes, but is not limited to: -experimental analysis of behaviour- behavioural physiology and biochemistry- neurobiology and sensory physiology- general physiology- circadian rhythms and photoperiodism- chemical ecology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信