Da-hui Lin-Yang, Francisco Pastor, Alfonso J. García-Cerezo
{"title":"Low Computational Cost for Multiple Waypoints Trajectory Planning: A Time-Optimal-Based Approach","authors":"Da-hui Lin-Yang, Francisco Pastor, Alfonso J. García-Cerezo","doi":"10.1002/aisy.202400363","DOIUrl":null,"url":null,"abstract":"<p>In the field of mobile robots, achieving minimum time in executing trajectories is crucial for applications like delivery, inspection, and search and rescue. In this article, a novel time-optimal planner based on optimization methods is introduced. Despite the high computational cost associated with such methods, the solution calculates time-optimal multi-waypoint trajectories, achieving results in the order of milliseconds. The proposed method formulates a time-optimal trajectory using the Pontryagin's maximum principle as a policy. By utilizing a point mass model, the planner generates trajectories that are adaptable to different robot models. The approach incorporates a definition of a search space to guarantee convergence while considering the system limits. Simulation and real-world experiments are performed to validate the feasibility of our method with different configurations. Simulation results compared to a benchmark method demonstrate our approach's superior performance in terms of computational time, achieving near-optimal solutions. In addition, in the real-world experiments, the integration of the method into practical applications is validated.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400363","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of mobile robots, achieving minimum time in executing trajectories is crucial for applications like delivery, inspection, and search and rescue. In this article, a novel time-optimal planner based on optimization methods is introduced. Despite the high computational cost associated with such methods, the solution calculates time-optimal multi-waypoint trajectories, achieving results in the order of milliseconds. The proposed method formulates a time-optimal trajectory using the Pontryagin's maximum principle as a policy. By utilizing a point mass model, the planner generates trajectories that are adaptable to different robot models. The approach incorporates a definition of a search space to guarantee convergence while considering the system limits. Simulation and real-world experiments are performed to validate the feasibility of our method with different configurations. Simulation results compared to a benchmark method demonstrate our approach's superior performance in terms of computational time, achieving near-optimal solutions. In addition, in the real-world experiments, the integration of the method into practical applications is validated.