Interconnected Microgrids Load-Frequency Control Using Stage-by-Stage Optimized TIDA+1 Error Signal Regulator

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hossein Shayeghi, Alireza Rahnama, Nicu Bizon, Antoni Szumny
{"title":"Interconnected Microgrids Load-Frequency Control Using Stage-by-Stage Optimized TIDA+1 Error Signal Regulator","authors":"Hossein Shayeghi,&nbsp;Alireza Rahnama,&nbsp;Nicu Bizon,&nbsp;Antoni Szumny","doi":"10.1002/eng2.13095","DOIUrl":null,"url":null,"abstract":"<p>Load-frequency control (LFC) is essential for maintaining system stability and ensuring high power quality in microgrids (MGs), particularly those heavily reliant on renewable energy sources (RES) and operating independently of the main grid. This paper introduces a novel control strategy aimed at improving LFC performance in interconnected MGs by correcting the error signal. The proposed controller, denoted as TIDA+1, combines tilt, integrator, derivative, and acceleration operators in a parallel configuration to refine the incoming error signal. The controller parameters are optimized using a modified particle swarm optimization (PSO) algorithm with nonlinear time-varying acceleration coefficients (NTVAC). The controller's effectiveness is validated through four distinct scenarios, including sudden load variations, system modeling uncertainties, fluctuations in RES outputs, and the impact of nonlinearities. Additionally, a lab-scale evaluation of the controller has been conducted to further assess its practical applicability. Comparative results demonstrate that the TIDA+1 controller outperforms traditional controllers such as PID and FOPID, especially under complex operational conditions. The study highlights the TIDA+1 controller as a robust and viable solution for LFC in MGs, with potential for future scalability and application in larger systems.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.13095","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.13095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Load-frequency control (LFC) is essential for maintaining system stability and ensuring high power quality in microgrids (MGs), particularly those heavily reliant on renewable energy sources (RES) and operating independently of the main grid. This paper introduces a novel control strategy aimed at improving LFC performance in interconnected MGs by correcting the error signal. The proposed controller, denoted as TIDA+1, combines tilt, integrator, derivative, and acceleration operators in a parallel configuration to refine the incoming error signal. The controller parameters are optimized using a modified particle swarm optimization (PSO) algorithm with nonlinear time-varying acceleration coefficients (NTVAC). The controller's effectiveness is validated through four distinct scenarios, including sudden load variations, system modeling uncertainties, fluctuations in RES outputs, and the impact of nonlinearities. Additionally, a lab-scale evaluation of the controller has been conducted to further assess its practical applicability. Comparative results demonstrate that the TIDA+1 controller outperforms traditional controllers such as PID and FOPID, especially under complex operational conditions. The study highlights the TIDA+1 controller as a robust and viable solution for LFC in MGs, with potential for future scalability and application in larger systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信