Enhancing porosity prediction: Integrating seismic inversion utilizing sparse layer reflectivity, and particle swarm optimization with radial basis function neural networks

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Ravi Kant, Brijesh Kumar, Ajay P. Singh, G. Hema, S. P. Maurya, Raghav Singh, K. H. Singh, Piyush Sarkar
{"title":"Enhancing porosity prediction: Integrating seismic inversion utilizing sparse layer reflectivity, and particle swarm optimization with radial basis function neural networks","authors":"Ravi Kant,&nbsp;Brijesh Kumar,&nbsp;Ajay P. Singh,&nbsp;G. Hema,&nbsp;S. P. Maurya,&nbsp;Raghav Singh,&nbsp;K. H. Singh,&nbsp;Piyush Sarkar","doi":"10.1111/1365-2478.13651","DOIUrl":null,"url":null,"abstract":"<p>Seismic inversion, a crucial process in reservoir characterization, gains prominence in overcoming challenges associated with traditional methods, particularly in exploring deeper reservoirs. In this present study, we propose an inversion approach based on modern techniques like sparse layer reflectivity and particle swarm optimization to obtain inverted impedance. The proposed sparse layer reflectivity and particle swarm optimization techniques effectively minimize the error between recorded seismic reflection data and synthetic seismic data. This reduction in error facilitates accurate prediction of subsurface parameters, enabling comprehensive reservoir characterization. The inverted impedance obtained from both methods serves as a foundation for predicting porosity, utilizing a radial basis function neural network across the entire seismic volume. The study identifies a significant porosity zone (&gt;20%) with a lower acoustic impedance of 6000–8500 m/s g cm<sup>3</sup>, interpreted as a sand channel or reservoir zone. This anomaly, between 1045 and 1065 ms two-way travel time, provides high-resolution insights into the subsurface. The particle swarm optimization algorithm shows higher correlation results, with 0.98 for impedance and 0.73 for porosity, compared to sparse layer reflectivity's 0.81 for impedance and 0.65 for porosity at well locations. Additionally, particle swarm optimization provides high-resolution subsurface insights near well location and across a broader spatial range. This suggests particle swarm optimization's superior potential for delivering higher resolution outcomes compared to sparse layer reflectivity.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 1","pages":"49-66"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13651","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic inversion, a crucial process in reservoir characterization, gains prominence in overcoming challenges associated with traditional methods, particularly in exploring deeper reservoirs. In this present study, we propose an inversion approach based on modern techniques like sparse layer reflectivity and particle swarm optimization to obtain inverted impedance. The proposed sparse layer reflectivity and particle swarm optimization techniques effectively minimize the error between recorded seismic reflection data and synthetic seismic data. This reduction in error facilitates accurate prediction of subsurface parameters, enabling comprehensive reservoir characterization. The inverted impedance obtained from both methods serves as a foundation for predicting porosity, utilizing a radial basis function neural network across the entire seismic volume. The study identifies a significant porosity zone (>20%) with a lower acoustic impedance of 6000–8500 m/s g cm3, interpreted as a sand channel or reservoir zone. This anomaly, between 1045 and 1065 ms two-way travel time, provides high-resolution insights into the subsurface. The particle swarm optimization algorithm shows higher correlation results, with 0.98 for impedance and 0.73 for porosity, compared to sparse layer reflectivity's 0.81 for impedance and 0.65 for porosity at well locations. Additionally, particle swarm optimization provides high-resolution subsurface insights near well location and across a broader spatial range. This suggests particle swarm optimization's superior potential for delivering higher resolution outcomes compared to sparse layer reflectivity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信