Khoa Nguyen, Wei Wang, Lichun Chang, Thien Truong, Heping Shen, Klaus Weber, Hieu T. Nguyen, Daniel Macdonald
{"title":"Photoluminescence Excitation Spectroscopy of Monolithic Perovskite/Silicon Tandem Solar Cells","authors":"Khoa Nguyen, Wei Wang, Lichun Chang, Thien Truong, Heping Shen, Klaus Weber, Hieu T. Nguyen, Daniel Macdonald","doi":"10.1002/solr.202400635","DOIUrl":null,"url":null,"abstract":"<p>The contributions of each subcell to the total photoluminescence (PL) spectrum of a monolithic perovskite/silicon tandem solar cell are distinguished using a variable wavelength excitation laser source. In the results, a strong overlap of the PL spectrum is shown, originating from the sub-bandgap region of the perovskite top cell with the emission from the silicon bottom cell, even with near-infrared excitation wavelengths. Consequently, an excitation laser wavelength of at least 815 nm is required for a dominant PL signal from the silicon bottom cell, and a wavelength no longer than 750 nm is needed for a dominant PL signal from the perovskite top cell in the investigated tandem solar cell. Moreover, a shoulder in the sub-bandgap emission of the perovskite top cell almost coincides with the PL response region of the silicon bottom cell, which can cause signal confusion in subcell characterization.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400635","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The contributions of each subcell to the total photoluminescence (PL) spectrum of a monolithic perovskite/silicon tandem solar cell are distinguished using a variable wavelength excitation laser source. In the results, a strong overlap of the PL spectrum is shown, originating from the sub-bandgap region of the perovskite top cell with the emission from the silicon bottom cell, even with near-infrared excitation wavelengths. Consequently, an excitation laser wavelength of at least 815 nm is required for a dominant PL signal from the silicon bottom cell, and a wavelength no longer than 750 nm is needed for a dominant PL signal from the perovskite top cell in the investigated tandem solar cell. Moreover, a shoulder in the sub-bandgap emission of the perovskite top cell almost coincides with the PL response region of the silicon bottom cell, which can cause signal confusion in subcell characterization.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.