Delineating Potential Groundwater Recharge Zones in the Semi-Arid Eastern Plains of Rajasthan, India

IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Vipin Garg, Manish Kumar, Milap Dashora, Rajesh Kumar, Amit Singh, Alok Kumar
{"title":"Delineating Potential Groundwater Recharge Zones in the Semi-Arid Eastern Plains of Rajasthan, India","authors":"Vipin Garg,&nbsp;Manish Kumar,&nbsp;Milap Dashora,&nbsp;Rajesh Kumar,&nbsp;Amit Singh,&nbsp;Alok Kumar","doi":"10.1002/clen.202400013","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Surface and subsurface anomalies, hydrological conditions, and dynamic interactions between embedded thematic layers influence groundwater recharge potential (GRP). Conducting a GRP study plays an essential role in promoting the sustainable use of groundwater resources amid a growing population and unplanned urbanization. This study focuses on assessing GRP in the semi-arid eastern plains of Rajasthan by delineating groundwater potential zones (GPZs) using an integrated approach involving remote sensing and geographical information system (RS-GIS) technique and analytical hierarchy process (AHP) method. Research findings indicate that the region dominated by fine sand, silt and clay, pediment-pediplain complex, aeolian sand sheet, higher drainage density, cambisols soil, river channels, floodplains, water bodies, soil hydraulic conductivity and higher surface wetness significantly contributed to good recharge potential in plains of the region. Additionally, lineaments, hills and valleys regulate water movement. A strong negative correlation (–0.78) between decadal-mean-depth fluctuation and GPZs frequency classes validates identifying high potential zones in areas with low mean-depth fluctuation. Sensitivity analysis highlights geology and geomorphology as crucial factors. However, the study addresses potential limitations and challenges, such as data scaling and spatial resolution issues due to nonlinear pixel fusion algorithms and AHP method-related limitations in model interpretation. The current study presents a convenient approach for improving groundwater resource management in hydrogeologically sensitive and drought-prone regions.</p>\n </div>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"53 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202400013","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Surface and subsurface anomalies, hydrological conditions, and dynamic interactions between embedded thematic layers influence groundwater recharge potential (GRP). Conducting a GRP study plays an essential role in promoting the sustainable use of groundwater resources amid a growing population and unplanned urbanization. This study focuses on assessing GRP in the semi-arid eastern plains of Rajasthan by delineating groundwater potential zones (GPZs) using an integrated approach involving remote sensing and geographical information system (RS-GIS) technique and analytical hierarchy process (AHP) method. Research findings indicate that the region dominated by fine sand, silt and clay, pediment-pediplain complex, aeolian sand sheet, higher drainage density, cambisols soil, river channels, floodplains, water bodies, soil hydraulic conductivity and higher surface wetness significantly contributed to good recharge potential in plains of the region. Additionally, lineaments, hills and valleys regulate water movement. A strong negative correlation (–0.78) between decadal-mean-depth fluctuation and GPZs frequency classes validates identifying high potential zones in areas with low mean-depth fluctuation. Sensitivity analysis highlights geology and geomorphology as crucial factors. However, the study addresses potential limitations and challenges, such as data scaling and spatial resolution issues due to nonlinear pixel fusion algorithms and AHP method-related limitations in model interpretation. The current study presents a convenient approach for improving groundwater resource management in hydrogeologically sensitive and drought-prone regions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Clean-soil Air Water
Clean-soil Air Water 环境科学-海洋与淡水生物学
CiteScore
2.80
自引率
5.90%
发文量
88
审稿时长
3.6 months
期刊介绍: CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications. Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信