Statistical Study of Electron Kinetic Entropy Generation at Earth's Quasi-Perpendicular Bow Shock

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
M. Lindberg, A. Wallner, S. Berglund, A. Vaivads
{"title":"Statistical Study of Electron Kinetic Entropy Generation at Earth's Quasi-Perpendicular Bow Shock","authors":"M. Lindberg,&nbsp;A. Wallner,&nbsp;S. Berglund,&nbsp;A. Vaivads","doi":"10.1029/2024JA033049","DOIUrl":null,"url":null,"abstract":"<p>We use the Magnetospheric Multiscale mission to study electron kinetic entropy across Earth's quasi-perpendicular bow shock. We perform a statistical study of how the change in electron entropy depends on the different plasma parameters associated with a collisionless shock crossing. The change in electron entropy exhibits strong correlations with upstream electron plasma beta, Alfvén Mach number, and electron thermal Mach number. We investigate the source of entropy generation by correlating the change in electron entropy across the shock to the measured electric and magnetic field wave power strengths for different frequency intervals within different regions in the shock transition layer. The electron entropy change is observed to be greater for higher electric field wave power within the shock ramp and shock foot for frequencies between the lower hybrid frequency and electron cyclotron frequency, suggesting electrostatic waves are important for electron kinetic entropy generation at Earth's quasi-perpendicular bow shock. Any eventual cross-shock potential contribution to the electron entropy generation has not been considered in this study.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033049","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033049","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We use the Magnetospheric Multiscale mission to study electron kinetic entropy across Earth's quasi-perpendicular bow shock. We perform a statistical study of how the change in electron entropy depends on the different plasma parameters associated with a collisionless shock crossing. The change in electron entropy exhibits strong correlations with upstream electron plasma beta, Alfvén Mach number, and electron thermal Mach number. We investigate the source of entropy generation by correlating the change in electron entropy across the shock to the measured electric and magnetic field wave power strengths for different frequency intervals within different regions in the shock transition layer. The electron entropy change is observed to be greater for higher electric field wave power within the shock ramp and shock foot for frequencies between the lower hybrid frequency and electron cyclotron frequency, suggesting electrostatic waves are important for electron kinetic entropy generation at Earth's quasi-perpendicular bow shock. Any eventual cross-shock potential contribution to the electron entropy generation has not been considered in this study.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信