A Novel Reciprocal Domain Adaptation Neural Network for Enhanced Diagnosis of Chronic Kidney Disease

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Expert Systems Pub Date : 2025-01-09 DOI:10.1111/exsy.13825
Saeed Iqbal, Adnan N. Qureshi, Musaed Alhussein, Khursheed Aurangzeb, Muhammad Zubair, Amir Hussain
{"title":"A Novel Reciprocal Domain Adaptation Neural Network for Enhanced Diagnosis of Chronic Kidney Disease","authors":"Saeed Iqbal,&nbsp;Adnan N. Qureshi,&nbsp;Musaed Alhussein,&nbsp;Khursheed Aurangzeb,&nbsp;Muhammad Zubair,&nbsp;Amir Hussain","doi":"10.1111/exsy.13825","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Chronic kidney disease (CKD) is a major global health concern caused mostly by high blood pressure and glucose levels. Detecting CKD early is critical for reducing its negative consequences since it can lead to increased mortality rates. With CKD's rising incidence expected to make it the fifth biggest cause of death by 2040, rapid advances in diagnostic approaches are required. This study presents the Reciprocal Domain Adaptation Network (RDAN) as a potential approach to the various issues of CKD diagnosis. RDAN is a neural network model that will help to traverse the complexity of CKD diagnosis by smoothly combining diverse data sets. RDAN consists of two critical units at its foundation: Mutual Model Adaptation (MMA) and Domain Model Learning. The MMA unit uses a powerful Global and Local Pyramid Pooling technique to extract rich features from a variety of data domains. Meanwhile, the DML unit uses semi-supervised domain-independent features combined with MMA features to improve representation learning. RDAN includes a reciprocal regularizer to promote cross-domain knowledge transfer, maximising feature representation for accurate CKD identification. An analysis of RDAN's performance on a variety of real-world datasets showed remarkable results in terms of accuracy (96.94%), precision (98.81%), recall (98.73%), F1-Score (98.88%), and area under the curve (AUC—99.35%). These results highlight the unmatched expertise of RDAN in managing data bias, domain changes, and privacy issues related to CKD diagnosis. Beyond statistical measures, RDAN's implications promise revolutionary breakthroughs in early CKD identification and subsequent therapeutic therapies. RDAN stands out as a groundbreaking method for diagnosing CKD. It delivers exceptional accuracy and can be seamlessly applied in various clinical environments.</p>\n </div>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13825","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic kidney disease (CKD) is a major global health concern caused mostly by high blood pressure and glucose levels. Detecting CKD early is critical for reducing its negative consequences since it can lead to increased mortality rates. With CKD's rising incidence expected to make it the fifth biggest cause of death by 2040, rapid advances in diagnostic approaches are required. This study presents the Reciprocal Domain Adaptation Network (RDAN) as a potential approach to the various issues of CKD diagnosis. RDAN is a neural network model that will help to traverse the complexity of CKD diagnosis by smoothly combining diverse data sets. RDAN consists of two critical units at its foundation: Mutual Model Adaptation (MMA) and Domain Model Learning. The MMA unit uses a powerful Global and Local Pyramid Pooling technique to extract rich features from a variety of data domains. Meanwhile, the DML unit uses semi-supervised domain-independent features combined with MMA features to improve representation learning. RDAN includes a reciprocal regularizer to promote cross-domain knowledge transfer, maximising feature representation for accurate CKD identification. An analysis of RDAN's performance on a variety of real-world datasets showed remarkable results in terms of accuracy (96.94%), precision (98.81%), recall (98.73%), F1-Score (98.88%), and area under the curve (AUC—99.35%). These results highlight the unmatched expertise of RDAN in managing data bias, domain changes, and privacy issues related to CKD diagnosis. Beyond statistical measures, RDAN's implications promise revolutionary breakthroughs in early CKD identification and subsequent therapeutic therapies. RDAN stands out as a groundbreaking method for diagnosing CKD. It delivers exceptional accuracy and can be seamlessly applied in various clinical environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems
Expert Systems 工程技术-计算机:理论方法
CiteScore
7.40
自引率
6.10%
发文量
266
审稿时长
24 months
期刊介绍: Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper. As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信