Saeed Iqbal, Adnan N. Qureshi, Musaed Alhussein, Khursheed Aurangzeb, Muhammad Zubair, Amir Hussain
{"title":"A Novel Reciprocal Domain Adaptation Neural Network for Enhanced Diagnosis of Chronic Kidney Disease","authors":"Saeed Iqbal, Adnan N. Qureshi, Musaed Alhussein, Khursheed Aurangzeb, Muhammad Zubair, Amir Hussain","doi":"10.1111/exsy.13825","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Chronic kidney disease (CKD) is a major global health concern caused mostly by high blood pressure and glucose levels. Detecting CKD early is critical for reducing its negative consequences since it can lead to increased mortality rates. With CKD's rising incidence expected to make it the fifth biggest cause of death by 2040, rapid advances in diagnostic approaches are required. This study presents the Reciprocal Domain Adaptation Network (RDAN) as a potential approach to the various issues of CKD diagnosis. RDAN is a neural network model that will help to traverse the complexity of CKD diagnosis by smoothly combining diverse data sets. RDAN consists of two critical units at its foundation: Mutual Model Adaptation (MMA) and Domain Model Learning. The MMA unit uses a powerful Global and Local Pyramid Pooling technique to extract rich features from a variety of data domains. Meanwhile, the DML unit uses semi-supervised domain-independent features combined with MMA features to improve representation learning. RDAN includes a reciprocal regularizer to promote cross-domain knowledge transfer, maximising feature representation for accurate CKD identification. An analysis of RDAN's performance on a variety of real-world datasets showed remarkable results in terms of accuracy (96.94%), precision (98.81%), recall (98.73%), F1-Score (98.88%), and area under the curve (AUC—99.35%). These results highlight the unmatched expertise of RDAN in managing data bias, domain changes, and privacy issues related to CKD diagnosis. Beyond statistical measures, RDAN's implications promise revolutionary breakthroughs in early CKD identification and subsequent therapeutic therapies. RDAN stands out as a groundbreaking method for diagnosing CKD. It delivers exceptional accuracy and can be seamlessly applied in various clinical environments.</p>\n </div>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13825","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic kidney disease (CKD) is a major global health concern caused mostly by high blood pressure and glucose levels. Detecting CKD early is critical for reducing its negative consequences since it can lead to increased mortality rates. With CKD's rising incidence expected to make it the fifth biggest cause of death by 2040, rapid advances in diagnostic approaches are required. This study presents the Reciprocal Domain Adaptation Network (RDAN) as a potential approach to the various issues of CKD diagnosis. RDAN is a neural network model that will help to traverse the complexity of CKD diagnosis by smoothly combining diverse data sets. RDAN consists of two critical units at its foundation: Mutual Model Adaptation (MMA) and Domain Model Learning. The MMA unit uses a powerful Global and Local Pyramid Pooling technique to extract rich features from a variety of data domains. Meanwhile, the DML unit uses semi-supervised domain-independent features combined with MMA features to improve representation learning. RDAN includes a reciprocal regularizer to promote cross-domain knowledge transfer, maximising feature representation for accurate CKD identification. An analysis of RDAN's performance on a variety of real-world datasets showed remarkable results in terms of accuracy (96.94%), precision (98.81%), recall (98.73%), F1-Score (98.88%), and area under the curve (AUC—99.35%). These results highlight the unmatched expertise of RDAN in managing data bias, domain changes, and privacy issues related to CKD diagnosis. Beyond statistical measures, RDAN's implications promise revolutionary breakthroughs in early CKD identification and subsequent therapeutic therapies. RDAN stands out as a groundbreaking method for diagnosing CKD. It delivers exceptional accuracy and can be seamlessly applied in various clinical environments.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.