{"title":"Enhanced Modeling and Control of Organic Rankine Cycle Systems via AM-LSTM Networks Based Nonlinear MPC","authors":"Yang Sun, Ming Du, Xiao Qi","doi":"10.1002/ese3.1962","DOIUrl":null,"url":null,"abstract":"<p>The organic Rankine cycle (ORC) serves as an effective means of converting low-grade heat sources into power, playing a pivotal role in environmentally friendly production and energy recovery. However, the inherent complexity, strong and unidentified nonlinearity, and control constraints pose significant challenges to designing an optimal controller for ORC systems. To address these issues, this research introduces a novel modeling and control framework for ORC systems. Leveraging an attention mechanism-based long short-term memory (AM-LSTM) network, the dynamic characteristics of ORC systems, which are subject to non-Gaussian disturbances, are accurately modeled. A performance metric based on survival information potential (SIP) is developed to optimize the network parameters. Furthermore, a multi-objective optimization approach that integrates nonlinear model predictive control (NMPC) with the multiverse optimizer (MVO) algorithm is implemented to ensure effective control under varying operating conditions and constraints. Through extensive simulations, the proposed framework demonstrates superior accuracy, robustness, and control performance for ORC systems.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 1","pages":"94-106"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1962","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1962","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The organic Rankine cycle (ORC) serves as an effective means of converting low-grade heat sources into power, playing a pivotal role in environmentally friendly production and energy recovery. However, the inherent complexity, strong and unidentified nonlinearity, and control constraints pose significant challenges to designing an optimal controller for ORC systems. To address these issues, this research introduces a novel modeling and control framework for ORC systems. Leveraging an attention mechanism-based long short-term memory (AM-LSTM) network, the dynamic characteristics of ORC systems, which are subject to non-Gaussian disturbances, are accurately modeled. A performance metric based on survival information potential (SIP) is developed to optimize the network parameters. Furthermore, a multi-objective optimization approach that integrates nonlinear model predictive control (NMPC) with the multiverse optimizer (MVO) algorithm is implemented to ensure effective control under varying operating conditions and constraints. Through extensive simulations, the proposed framework demonstrates superior accuracy, robustness, and control performance for ORC systems.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.