{"title":"Climate change attribution of Typhoon Haiyan with the Imperial College Storm Model","authors":"Nathan Sparks, Ralf Toumi","doi":"10.1002/asl.1285","DOIUrl":null,"url":null,"abstract":"<p>It is difficult to model changes in the likelihood of tropical cyclones under climate change to date. We do this, for the first time, by a applying a stochastic tropical cyclone event set generated by the Imperial College Storm Model to attribute the contribution of climate change to the case of Typhoon Haiyan in 2013. Compared to a pre-industrial baseline, we estimate that a typhoon with a landfall maximum wind speed like Haiyan was larger by +3.5 m/s. This is in good agreement with previous full physics numerical model estimates. A Haiyan type of event has a current return period of 850 years, and the fractional attributable risk due to climate change is 98%. Without climate change, this event was very unlikely. The type of information available from the IRIS model could inform subsidizing of catastrophe bond yield in the context of the loss and damage fund.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"26 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1285","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1285","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
It is difficult to model changes in the likelihood of tropical cyclones under climate change to date. We do this, for the first time, by a applying a stochastic tropical cyclone event set generated by the Imperial College Storm Model to attribute the contribution of climate change to the case of Typhoon Haiyan in 2013. Compared to a pre-industrial baseline, we estimate that a typhoon with a landfall maximum wind speed like Haiyan was larger by +3.5 m/s. This is in good agreement with previous full physics numerical model estimates. A Haiyan type of event has a current return period of 850 years, and the fractional attributable risk due to climate change is 98%. Without climate change, this event was very unlikely. The type of information available from the IRIS model could inform subsidizing of catastrophe bond yield in the context of the loss and damage fund.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.