Growth and Lipid Production of Ankistrodesmus Sp. IFRPD 1061 Under Mixotrophic Culture Condition: Effect of Sodium Acetate Concentration and Period Addition of Sodium Acetate in an Open Pond

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Paninee Jarungkeerativimol, Imrana Niaz Sultan, Muhammad Waseem Khan, Pramuk Parakulsuksatid, Afrasiab Khan Tareen
{"title":"Growth and Lipid Production of Ankistrodesmus Sp. IFRPD 1061 Under Mixotrophic Culture Condition: Effect of Sodium Acetate Concentration and Period Addition of Sodium Acetate in an Open Pond","authors":"Paninee Jarungkeerativimol,&nbsp;Imrana Niaz Sultan,&nbsp;Muhammad Waseem Khan,&nbsp;Pramuk Parakulsuksatid,&nbsp;Afrasiab Khan Tareen","doi":"10.1002/ceat.202400114","DOIUrl":null,"url":null,"abstract":"<p>Microalgae with increased amount of biomass and lipid yield are crucial for biodiesel production. Mixotrophic cultivation has prominence for increasing the micro-algal cell concentration and hence the volumetric productivity owing to independent utilization of both the photo-assimilation of CO<sub>2</sub> and oxidative assimilation of organic carbon sources. In this study, <i>Ankistrodesmus</i> sp. IFRPD 1061 was examined under various concentrations of sodium acetate for concentration and productivity of biomass and lipid, lipid contents (LCs), and fatty acid profiles. The optimum condition was obtained at Day 21 with 10 mM sodium acetate, which gave 6.940 ± 0.057 g L<sup>−1</sup> biomass concentration, 327.619 ± 2.020 mg L<sup>−1</sup> day<sup>−1</sup> biomass productivity, 2.795 ± 0.191 g L<sup>−1</sup> lipid concentration, 131.955 ± 9.275 mg L<sup>−1</sup> day<sup>−1</sup> lipid productivity, and 40.286 % ± 3.079 % w/w LC. The optimum condition (10 mM sodium acetate) in an open pond cultivation attained maximum values at Day 14, that is, 0.575 ± 0.004 g L<sup>−1</sup> biomass concentration, 38.161 ± 0.076 mg L<sup>−1</sup> day<sup>−1</sup> biomass productivity, 0.203 ± 0.002 g L<sup>−1</sup> lipid concentration, 13.440 ± 0.197 mg L<sup>−1</sup> day<sup>−1</sup> lipid productivity, and 35.219 % ± 0.585 % w/w LC. The lipids recovered from mixotrophic micro-algae were primarily unsaturated fatty acids, which are appropriate to produce biodiesel. The results revealed that a 10 mM sodium acetate concentration can enhance lipid accumulation within algal cells.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"48 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202400114","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microalgae with increased amount of biomass and lipid yield are crucial for biodiesel production. Mixotrophic cultivation has prominence for increasing the micro-algal cell concentration and hence the volumetric productivity owing to independent utilization of both the photo-assimilation of CO2 and oxidative assimilation of organic carbon sources. In this study, Ankistrodesmus sp. IFRPD 1061 was examined under various concentrations of sodium acetate for concentration and productivity of biomass and lipid, lipid contents (LCs), and fatty acid profiles. The optimum condition was obtained at Day 21 with 10 mM sodium acetate, which gave 6.940 ± 0.057 g L−1 biomass concentration, 327.619 ± 2.020 mg L−1 day−1 biomass productivity, 2.795 ± 0.191 g L−1 lipid concentration, 131.955 ± 9.275 mg L−1 day−1 lipid productivity, and 40.286 % ± 3.079 % w/w LC. The optimum condition (10 mM sodium acetate) in an open pond cultivation attained maximum values at Day 14, that is, 0.575 ± 0.004 g L−1 biomass concentration, 38.161 ± 0.076 mg L−1 day−1 biomass productivity, 0.203 ± 0.002 g L−1 lipid concentration, 13.440 ± 0.197 mg L−1 day−1 lipid productivity, and 35.219 % ± 0.585 % w/w LC. The lipids recovered from mixotrophic micro-algae were primarily unsaturated fatty acids, which are appropriate to produce biodiesel. The results revealed that a 10 mM sodium acetate concentration can enhance lipid accumulation within algal cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信