Infinite unrestricted sumsets of the form B + B $B+B$ in sets with large density

IF 0.8 3区 数学 Q2 MATHEMATICS
Ioannis Kousek, Tristán Radić
{"title":"Infinite unrestricted sumsets of the form \n \n \n B\n +\n B\n \n $B+B$\n in sets with large density","authors":"Ioannis Kousek,&nbsp;Tristán Radić","doi":"10.1112/blms.13180","DOIUrl":null,"url":null,"abstract":"<p>For a set <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊂</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$A \\subset {\\mathbb {N}}$</annotation>\n </semantics></math>, we characterize the existence of an infinite set <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>⊂</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$B \\subset {\\mathbb {N}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>∈</mo>\n <mo>{</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$t \\in \\lbrace 0,1\\rbrace$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>+</mo>\n <mi>B</mi>\n <mo>⊂</mo>\n <mi>A</mi>\n <mo>−</mo>\n <mi>t</mi>\n </mrow>\n <annotation>$B+B \\subset A-t$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>+</mo>\n <mi>B</mi>\n <mo>=</mo>\n <mo>{</mo>\n <msub>\n <mi>b</mi>\n <mn>1</mn>\n </msub>\n <mo>+</mo>\n <msub>\n <mi>b</mi>\n <mn>2</mn>\n </msub>\n <mo>:</mo>\n <msub>\n <mi>b</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>b</mi>\n <mn>2</mn>\n </msub>\n <mo>∈</mo>\n <mi>B</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$B+B =\\lbrace b_1+b_2\\colon b_1,b_2 \\in B\\rbrace$</annotation>\n </semantics></math>, in terms of the density of the set <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>. Specifically, when the lower density <span></span><math>\n <semantics>\n <mrow>\n <munder>\n <mrow>\n <mrow></mrow>\n <mspace></mspace>\n <mi>d</mi>\n </mrow>\n <mo>̲</mo>\n </munder>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <mo>&gt;</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\underline{\\mathop {}\\!\\mathrm{d}}(A) &gt;1/2$</annotation>\n </semantics></math> or the upper density <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mrow></mrow>\n <mspace></mspace>\n <mi>d</mi>\n </mrow>\n <mo>¯</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <mo>&gt;</mo>\n <mn>2</mn>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$\\overline{\\mathop {}\\!\\mathrm{d}}(A)&gt; 2/3$</annotation>\n </semantics></math>, the existence of such a set <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>⊂</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$B\\subset {\\mathbb {N}}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>∈</mo>\n <mo>{</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$t\\in \\lbrace 0,1\\rbrace$</annotation>\n </semantics></math> is assured. Furthermore, whenever <span></span><math>\n <semantics>\n <mrow>\n <munder>\n <mrow>\n <mrow></mrow>\n <mspace></mspace>\n <mi>d</mi>\n </mrow>\n <mo>̲</mo>\n </munder>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <mo>&gt;</mo>\n <mn>3</mn>\n <mo>/</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$\\underline{\\mathop {}\\!\\mathrm{d}}(A) &gt; 3/4$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mrow>\n <mrow></mrow>\n <mspace></mspace>\n <mi>d</mi>\n </mrow>\n <mo>¯</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>)</mo>\n </mrow>\n <mo>&gt;</mo>\n <mn>5</mn>\n <mo>/</mo>\n <mn>6</mn>\n </mrow>\n <annotation>$\\overline{\\mathop {}\\!\\mathrm{d}}(A)&gt;5/6$</annotation>\n </semantics></math>, we show that the shift <span></span><math>\n <semantics>\n <mi>t</mi>\n <annotation>$t$</annotation>\n </semantics></math> is unnecessary and we also provide examples to show that these bounds are sharp. Finally, we construct a syndetic three-coloring of the natural numbers that does not contain a monochromatic <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>+</mo>\n <mi>B</mi>\n <mo>+</mo>\n <mi>t</mi>\n </mrow>\n <annotation>$B+B+t$</annotation>\n </semantics></math> for any infinite set <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>⊂</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$B \\subset {\\mathbb {N}}$</annotation>\n </semantics></math> and number <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$t \\in {\\mathbb {N}}$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"48-68"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13180","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13180","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a set A N $A \subset {\mathbb {N}}$ , we characterize the existence of an infinite set B N $B \subset {\mathbb {N}}$ and t { 0 , 1 } $t \in \lbrace 0,1\rbrace$ such that B + B A t $B+B \subset A-t$ , where B + B = { b 1 + b 2 : b 1 , b 2 B } $B+B =\lbrace b_1+b_2\colon b_1,b_2 \in B\rbrace$ , in terms of the density of the set A $A$ . Specifically, when the lower density d ̲ ( A ) > 1 / 2 $\underline{\mathop {}\!\mathrm{d}}(A) >1/2$ or the upper density d ¯ ( A ) > 2 / 3 $\overline{\mathop {}\!\mathrm{d}}(A)> 2/3$ , the existence of such a set B N $B\subset {\mathbb {N}}$ and t { 0 , 1 } $t\in \lbrace 0,1\rbrace$ is assured. Furthermore, whenever d ̲ ( A ) > 3 / 4 $\underline{\mathop {}\!\mathrm{d}}(A) > 3/4$ or d ¯ ( A ) > 5 / 6 $\overline{\mathop {}\!\mathrm{d}}(A)>5/6$ , we show that the shift t $t$ is unnecessary and we also provide examples to show that these bounds are sharp. Finally, we construct a syndetic three-coloring of the natural numbers that does not contain a monochromatic B + B + t $B+B+t$ for any infinite set B N $B \subset {\mathbb {N}}$ and number t N $t \in {\mathbb {N}}$ .

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信