{"title":"Decoupling for Schatten class operators in the setting of quantum harmonic analysis","authors":"Helge J. Samuelsen","doi":"10.1112/blms.13178","DOIUrl":null,"url":null,"abstract":"<p>We introduce the notion of decoupling for operators, and prove an equivalence between classical <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>ℓ</mi>\n <mi>q</mi>\n </msup>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </mrow>\n <annotation>$\\ell ^qL^p$</annotation>\n </semantics></math> decoupling for functions and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>ℓ</mi>\n <mi>q</mi>\n </msup>\n <msup>\n <mi>S</mi>\n <mi>p</mi>\n </msup>\n </mrow>\n <annotation>$\\ell ^q{\\mathcal {S}}^p$</annotation>\n </semantics></math> decoupling for operators on bounded sets in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mrow>\n <mn>2</mn>\n <mi>d</mi>\n </mrow>\n </msup>\n <annotation>${\\mathbb {R}}^{2d}$</annotation>\n </semantics></math>. We also show that the equivalence depends only on the bounded set <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> and not on the values of <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$p,q$</annotation>\n </semantics></math> nor on the partition of <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math>. The proof relies on a quantum version of Wiener's division lemma.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"23-37"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13178","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13178","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce the notion of decoupling for operators, and prove an equivalence between classical decoupling for functions and decoupling for operators on bounded sets in . We also show that the equivalence depends only on the bounded set and not on the values of nor on the partition of . The proof relies on a quantum version of Wiener's division lemma.