Decoupling for Schatten class operators in the setting of quantum harmonic analysis

IF 0.8 3区 数学 Q2 MATHEMATICS
Helge J. Samuelsen
{"title":"Decoupling for Schatten class operators in the setting of quantum harmonic analysis","authors":"Helge J. Samuelsen","doi":"10.1112/blms.13178","DOIUrl":null,"url":null,"abstract":"<p>We introduce the notion of decoupling for operators, and prove an equivalence between classical <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>ℓ</mi>\n <mi>q</mi>\n </msup>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n </mrow>\n <annotation>$\\ell ^qL^p$</annotation>\n </semantics></math> decoupling for functions and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>ℓ</mi>\n <mi>q</mi>\n </msup>\n <msup>\n <mi>S</mi>\n <mi>p</mi>\n </msup>\n </mrow>\n <annotation>$\\ell ^q{\\mathcal {S}}^p$</annotation>\n </semantics></math> decoupling for operators on bounded sets in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mrow>\n <mn>2</mn>\n <mi>d</mi>\n </mrow>\n </msup>\n <annotation>${\\mathbb {R}}^{2d}$</annotation>\n </semantics></math>. We also show that the equivalence depends only on the bounded set <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> and not on the values of <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$p,q$</annotation>\n </semantics></math> nor on the partition of <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math>. The proof relies on a quantum version of Wiener's division lemma.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 1","pages":"23-37"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13178","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13178","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the notion of decoupling for operators, and prove an equivalence between classical q L p $\ell ^qL^p$ decoupling for functions and q S p $\ell ^q{\mathcal {S}}^p$ decoupling for operators on bounded sets in R 2 d ${\mathbb {R}}^{2d}$ . We also show that the equivalence depends only on the bounded set Ω $\Omega$ and not on the values of p , q $p,q$ nor on the partition of Ω $\Omega$ . The proof relies on a quantum version of Wiener's division lemma.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信