Soil Texture-Based Parameterisation and Hydrological Insights of a Fully Coupled Surface and Subsurface Model at the Hubbard Brook Experimental Forest, USA

IF 3.2 3区 地球科学 Q1 Environmental Science
Karim Norouzi-Moghanjoghi, Habibollah Fakhraei, Mahnaz Valipour, Charles T. Driscoll
{"title":"Soil Texture-Based Parameterisation and Hydrological Insights of a Fully Coupled Surface and Subsurface Model at the Hubbard Brook Experimental Forest, USA","authors":"Karim Norouzi-Moghanjoghi,&nbsp;Habibollah Fakhraei,&nbsp;Mahnaz Valipour,&nbsp;Charles T. Driscoll","doi":"10.1002/hyp.70045","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Parameterisation of fully coupled integrated hydrological models is challenging. The state-of-the-art hydrogeology models rely on solutions of coupled surface and subsurface partial differential equations. Calibration of these models with traditional optimisation methods are not yet viable due to the high computational costs. Prior knowledge of the range of the parameters can be helpful as a starting point, however, due to natural variations, abstractions and conceptualizations used in modelling, a systematic exploration of the variable space is needed. In this study, we utilise the natural clustering of the soils based on their saturated and unsaturated hydraulic behaviour derived from soil texture maps in conjunction with two level Latin hypercube sampling to effectively explore model parameter spaces. Soil texture maps are similar to USDA soil classifications; however, the objective is to classify the soil based on their unsaturated behaviour, rather than soil texture. The method has never been utilised in the modelling and the results show that it can be applied to larger watersheds. The area of study is Hubbard Brook Experimental Forest, a northern hardwood forest in the White Mountains of New Hampshire, USA. An average Nash–Sutcliffe value of 0.80 is achieved for hourly discharge for the eight streams in the catchment. The Nash–Sutcliffe measure shows a 7% improvement with the addition of the snow melt and evapotranspiration parameters in the second stage. Exchange flux patterns vary seasonally in the catchment with largest infiltration occurring in spring.</p>\n </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70045","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Parameterisation of fully coupled integrated hydrological models is challenging. The state-of-the-art hydrogeology models rely on solutions of coupled surface and subsurface partial differential equations. Calibration of these models with traditional optimisation methods are not yet viable due to the high computational costs. Prior knowledge of the range of the parameters can be helpful as a starting point, however, due to natural variations, abstractions and conceptualizations used in modelling, a systematic exploration of the variable space is needed. In this study, we utilise the natural clustering of the soils based on their saturated and unsaturated hydraulic behaviour derived from soil texture maps in conjunction with two level Latin hypercube sampling to effectively explore model parameter spaces. Soil texture maps are similar to USDA soil classifications; however, the objective is to classify the soil based on their unsaturated behaviour, rather than soil texture. The method has never been utilised in the modelling and the results show that it can be applied to larger watersheds. The area of study is Hubbard Brook Experimental Forest, a northern hardwood forest in the White Mountains of New Hampshire, USA. An average Nash–Sutcliffe value of 0.80 is achieved for hourly discharge for the eight streams in the catchment. The Nash–Sutcliffe measure shows a 7% improvement with the addition of the snow melt and evapotranspiration parameters in the second stage. Exchange flux patterns vary seasonally in the catchment with largest infiltration occurring in spring.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信