Flash Drought Teleconnection With the Large-Scale Climate Drivers in the Homogeneous Rainfall Regions of India

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Akshay Pachore, Renji Remesan, Jayanarayanan Kuttippurath
{"title":"Flash Drought Teleconnection With the Large-Scale Climate Drivers in the Homogeneous Rainfall Regions of India","authors":"Akshay Pachore,&nbsp;Renji Remesan,&nbsp;Jayanarayanan Kuttippurath","doi":"10.1002/joc.8711","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Flash drought events can be characterised by the quick depletion of crop root zone soil moisture (rapid intensification) and hence can be termed as agricultural flash droughts. These events can have devastating impacts, such as increasing the risk of agricultural yield loss, heatwaves and increased wildfire risk, which further have cascading impacts on the socio-economic conditions. The regional hotspots of flash droughts are analysed for winter, pre-monsoon, monsoon and post-monsoon seasons over India from 1981 to 2020. We assess the impact of the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) on the flash drought frequency (FDF: number of flash drought events). The causal connection of the FDF with the ENSO and IOD is analysed using the PCMCI (Peter and Clark's algorithm combined with the Momentary Conditional Independence) algorithm. The monsoon season (June–September) is found to be more prone to flash droughts with higher spatial/regional average values of total per pixel FDF during the 40-year period over the Central Northeast (~54) and West Central (~41) regions. It is observed that the fraction of the total number of flash droughts during the El Niño years (38.8%) is higher as compared with that in La Niña years (25.7%). It is also found that the co-occurrence of positive/negative IOD with the El Niño phase can alter the seasonal fraction of FDF over India, highlighting the high complexity in the ENSO–IOD interactions. The causal analysis shows that only the Southern Peninsula and West Central regions have significant direct and lagged causal links of average per pixel FDF with IOD. Whereas, similar (direct and lagged) causal connections are observed between the ENSO and IOD. This study reveals that flash droughts and their teleconnections vary greatly among the seasons and regions in India, limiting its accurate predictions and increasing the risk to agricultural communities.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8711","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Flash drought events can be characterised by the quick depletion of crop root zone soil moisture (rapid intensification) and hence can be termed as agricultural flash droughts. These events can have devastating impacts, such as increasing the risk of agricultural yield loss, heatwaves and increased wildfire risk, which further have cascading impacts on the socio-economic conditions. The regional hotspots of flash droughts are analysed for winter, pre-monsoon, monsoon and post-monsoon seasons over India from 1981 to 2020. We assess the impact of the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) on the flash drought frequency (FDF: number of flash drought events). The causal connection of the FDF with the ENSO and IOD is analysed using the PCMCI (Peter and Clark's algorithm combined with the Momentary Conditional Independence) algorithm. The monsoon season (June–September) is found to be more prone to flash droughts with higher spatial/regional average values of total per pixel FDF during the 40-year period over the Central Northeast (~54) and West Central (~41) regions. It is observed that the fraction of the total number of flash droughts during the El Niño years (38.8%) is higher as compared with that in La Niña years (25.7%). It is also found that the co-occurrence of positive/negative IOD with the El Niño phase can alter the seasonal fraction of FDF over India, highlighting the high complexity in the ENSO–IOD interactions. The causal analysis shows that only the Southern Peninsula and West Central regions have significant direct and lagged causal links of average per pixel FDF with IOD. Whereas, similar (direct and lagged) causal connections are observed between the ENSO and IOD. This study reveals that flash droughts and their teleconnections vary greatly among the seasons and regions in India, limiting its accurate predictions and increasing the risk to agricultural communities.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信