Enhancing Security and Performance in Live VM Migration: A Machine Learning-Driven Framework With Selective Encryption for Enhanced Security and Performance in Cloud Computing Environments
IF 3 4区 计算机科学Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Raseena M. Haris, Mahmoud Barhamgi, Ahmed Badawy, Armstrong Nhlabatsi, Khaled M. Khan
{"title":"Enhancing Security and Performance in Live VM Migration: A Machine Learning-Driven Framework With Selective Encryption for Enhanced Security and Performance in Cloud Computing Environments","authors":"Raseena M. Haris, Mahmoud Barhamgi, Ahmed Badawy, Armstrong Nhlabatsi, Khaled M. Khan","doi":"10.1111/exsy.13823","DOIUrl":null,"url":null,"abstract":"<p>Live virtual machine (LVM) migration is pivotal in cloud computing for its ability to seamlessly transfer virtual machines (VMs) between physical hosts, optimise resource utilisation, and enable uninterrupted service. However, concerns persist regarding safeguarding sensitive data during migration, particularly in critical sectors like healthcare, banking and military operations. Existing migration methods often compromise between performance and data security, prompting the need for a balanced solution. To address this, we propose a novel framework merging machine learning with selective encryption to fortify the pre-copy live migration process. Our approach intelligently predicts optimal migration times while selectively encrypting sensitive data, ensuring confidentiality and integrity without compromising performance. Rigorous experiments demonstrate its effectiveness, showcasing an average 51.82% reduction in downtime and an average 72.73% decrease in total migration time across diverse workloads. This integration of selective encryption not only bolsters security but also optimises migration metrics, presenting a robust solution for uninterrupted service delivery in critical cloud computing domains.</p>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/exsy.13823","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13823","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Live virtual machine (LVM) migration is pivotal in cloud computing for its ability to seamlessly transfer virtual machines (VMs) between physical hosts, optimise resource utilisation, and enable uninterrupted service. However, concerns persist regarding safeguarding sensitive data during migration, particularly in critical sectors like healthcare, banking and military operations. Existing migration methods often compromise between performance and data security, prompting the need for a balanced solution. To address this, we propose a novel framework merging machine learning with selective encryption to fortify the pre-copy live migration process. Our approach intelligently predicts optimal migration times while selectively encrypting sensitive data, ensuring confidentiality and integrity without compromising performance. Rigorous experiments demonstrate its effectiveness, showcasing an average 51.82% reduction in downtime and an average 72.73% decrease in total migration time across diverse workloads. This integration of selective encryption not only bolsters security but also optimises migration metrics, presenting a robust solution for uninterrupted service delivery in critical cloud computing domains.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.