Elastoplastic Crack Initiation Behavior of Unsaturated Rock Fractures (Cavities) With Asymmetric Hole-Edge Cracks Under Gas-Ice Pressure

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL
Wenhua Chen, Tian Xiang
{"title":"Elastoplastic Crack Initiation Behavior of Unsaturated Rock Fractures (Cavities) With Asymmetric Hole-Edge Cracks Under Gas-Ice Pressure","authors":"Wenhua Chen,&nbsp;Tian Xiang","doi":"10.1111/ffe.14536","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Current research on frost heave-induced cracking in fractures of rock masses in cold regions typically assumes that fractures are fully saturated. However, in actual engineering practice, rock mass fractures are often in an unsaturated state. Upon freezing, the fracture surfaces are subjected to a complex combination of gas pressure, freezing pressure, and ice friction forces. This study investigates the crack initiation mechanisms of unsaturated rock fractures with asymmetric edge cracks under gas-ice pressure conditions. Assuming a small yield range, we derive the calculation formulas for gas pressure after freezing, stress intensity factor, crack initiation angle, and crack initiation stress based on the complex variable function and elastic-plastic crack mechanics theory. Additionally, an improved phase-field model is proposed for calculating dynamic crack propagation in mixed-mode I-II fractures, with key parameters analyzed and discussed. The results demonstrate that: By comparing the analytical solutions with numerical calculations, the validity of the proposed model is verified. During the freezing process, dynamic crack propagation in unsaturated fractures will exhibit bifurcation. At higher water saturation levels, crack propagation shows a pattern of initial bifurcation followed by subsequent merging.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 3","pages":"1066-1082"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14536","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Current research on frost heave-induced cracking in fractures of rock masses in cold regions typically assumes that fractures are fully saturated. However, in actual engineering practice, rock mass fractures are often in an unsaturated state. Upon freezing, the fracture surfaces are subjected to a complex combination of gas pressure, freezing pressure, and ice friction forces. This study investigates the crack initiation mechanisms of unsaturated rock fractures with asymmetric edge cracks under gas-ice pressure conditions. Assuming a small yield range, we derive the calculation formulas for gas pressure after freezing, stress intensity factor, crack initiation angle, and crack initiation stress based on the complex variable function and elastic-plastic crack mechanics theory. Additionally, an improved phase-field model is proposed for calculating dynamic crack propagation in mixed-mode I-II fractures, with key parameters analyzed and discussed. The results demonstrate that: By comparing the analytical solutions with numerical calculations, the validity of the proposed model is verified. During the freezing process, dynamic crack propagation in unsaturated fractures will exhibit bifurcation. At higher water saturation levels, crack propagation shows a pattern of initial bifurcation followed by subsequent merging.

气冰压力下非对称孔边裂缝非饱和岩石裂隙(腔)的弹塑性起裂行为
目前对寒区岩体裂隙冻胀开裂的研究通常假设裂隙是完全饱和的。但在实际工程实践中,岩体裂隙往往处于非饱和状态。在冻结时,裂缝表面受到气体压力、冻结压力和冰摩擦力的复杂组合。研究了气冰压力条件下非对称边缘裂缝非饱和岩石裂缝的起裂机理。在小屈服范围下,基于复变函数和弹塑性裂纹力学理论,推导了冻结后气体压力、应力强度因子、裂纹起裂角和裂纹起裂应力的计算公式。此外,提出了一种改进的I-II混合模式断裂动态裂纹扩展相场模型,并对关键参数进行了分析和讨论。结果表明:通过解析解与数值计算的比较,验证了所提模型的有效性。在冻结过程中,非饱和裂缝的动态裂纹扩展会出现分岔。在较高含水饱和度下,裂缝扩展表现为先分岔后合并的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信