A Scoping Review of Literature on Deep Learning Techniques for Face Recognition

IF 4.3 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Andisani Nemavhola, Serestina Viriri, Colin Chibaya
{"title":"A Scoping Review of Literature on Deep Learning Techniques for Face Recognition","authors":"Andisani Nemavhola,&nbsp;Serestina Viriri,&nbsp;Colin Chibaya","doi":"10.1155/hbe2/5979728","DOIUrl":null,"url":null,"abstract":"<p>Deep learning has led to the creation of facial recognition technologies using convolutional neural networks (CNNs). This preliminary study explores the application of CNN architectures in face recognition to gain a deeper understanding of the challenges and methodologies in the field. The study systematically reviewed relevant literature using the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) framework. Out of 3622 eligible papers, 266 were included in the review, with 47% proposing new techniques and 1% focusing on method implementation and comparison. Most studies used images rather than video as training or testing data, with 78% using clean data and only 7% utilizing occluded and clean data. It was observed that traditional CNN architectures were predominantly employed. The study identified a lack of research on the implementation and definition of CNN architectures, the development of facial recognition models using both clean and occluded images and videos, and the exploration of nontraditional CNN architectures. The challenges affecting facial recognition included occlusion, distance from the camera, camera angle, and lighting conditions. This preliminary assessment provides an insight into the use of CNN in face recognition and suggests that nontraditional CNN architectures could be further explored in future research.</p>","PeriodicalId":36408,"journal":{"name":"Human Behavior and Emerging Technologies","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/hbe2/5979728","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Behavior and Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/hbe2/5979728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning has led to the creation of facial recognition technologies using convolutional neural networks (CNNs). This preliminary study explores the application of CNN architectures in face recognition to gain a deeper understanding of the challenges and methodologies in the field. The study systematically reviewed relevant literature using the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) framework. Out of 3622 eligible papers, 266 were included in the review, with 47% proposing new techniques and 1% focusing on method implementation and comparison. Most studies used images rather than video as training or testing data, with 78% using clean data and only 7% utilizing occluded and clean data. It was observed that traditional CNN architectures were predominantly employed. The study identified a lack of research on the implementation and definition of CNN architectures, the development of facial recognition models using both clean and occluded images and videos, and the exploration of nontraditional CNN architectures. The challenges affecting facial recognition included occlusion, distance from the camera, camera angle, and lighting conditions. This preliminary assessment provides an insight into the use of CNN in face recognition and suggests that nontraditional CNN architectures could be further explored in future research.

Abstract Image

深度学习技术用于人脸识别的文献综述
深度学习导致了使用卷积神经网络(cnn)的面部识别技术的创建。本初步研究探讨了CNN架构在人脸识别中的应用,以更深入地了解该领域的挑战和方法。本研究使用系统评价首选报告项目和范围评价扩展元分析(PRISMA-ScR)框架系统地回顾了相关文献。在3622篇符合条件的论文中,266篇被纳入综述,其中47%提出了新技术,1%关注方法的实施和比较。大多数研究使用图像而不是视频作为训练或测试数据,78%使用干净的数据,只有7%使用闭塞和干净的数据。可以观察到,传统的CNN架构被主要采用。该研究发现,在CNN架构的实现和定义、使用干净和遮挡图像和视频的面部识别模型的开发以及对非传统CNN架构的探索方面缺乏研究。影响面部识别的挑战包括遮挡、与相机的距离、相机角度和照明条件。这一初步评估为CNN在人脸识别中的应用提供了深入的见解,并表明非传统的CNN架构可以在未来的研究中进一步探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Behavior and Emerging Technologies
Human Behavior and Emerging Technologies Social Sciences-Social Sciences (all)
CiteScore
17.20
自引率
8.70%
发文量
73
期刊介绍: Human Behavior and Emerging Technologies is an interdisciplinary journal dedicated to publishing high-impact research that enhances understanding of the complex interactions between diverse human behavior and emerging digital technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信