{"title":"Optimizing Winglet Cant Angle for Enhanced Aircraft Wing Performance Using CFD Simulation and Hybrid ANN-GA","authors":"Vidhit Mandia, Vipul Sharma, Yash Chandra, Gaurav Kumar, Raj Kumar Singh","doi":"10.1002/fld.5341","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Winglets are an extended angled or vertical projected at the wing tips used to reduce the drag encountered during the flight of an aircraft. The main aim of this research was to study the effects of winglets on NACA 4412 airfoil at 15° angle of attack. The simulation was done on the basis of the aerodynamic properties such as lift (CL), drag (CD), and lift/drag (CL/CD) ratio for both with and without the winglets at various cant angles. The designing was carried out in ANSYS Design Modeler for both with and without winglet. Further, the meshing part was again carried out in ANSYS Mesh. K-Epsilon (two equation) turbulence model is used for the simulation at the inlet speed of 100 m/s, since it is the most common model used to simulate the mean flow characteristics for high turbulent conditions. Further, the cant angle has been optimized to get the maximum coefficient of lift using Nelder Mead, Genetic Algorithm, and Genetic Algorithm with ANN optimization techniques.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 3","pages":"211-223"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5341","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Winglets are an extended angled or vertical projected at the wing tips used to reduce the drag encountered during the flight of an aircraft. The main aim of this research was to study the effects of winglets on NACA 4412 airfoil at 15° angle of attack. The simulation was done on the basis of the aerodynamic properties such as lift (CL), drag (CD), and lift/drag (CL/CD) ratio for both with and without the winglets at various cant angles. The designing was carried out in ANSYS Design Modeler for both with and without winglet. Further, the meshing part was again carried out in ANSYS Mesh. K-Epsilon (two equation) turbulence model is used for the simulation at the inlet speed of 100 m/s, since it is the most common model used to simulate the mean flow characteristics for high turbulent conditions. Further, the cant angle has been optimized to get the maximum coefficient of lift using Nelder Mead, Genetic Algorithm, and Genetic Algorithm with ANN optimization techniques.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.