An Antiferroelectric-Coated Metal Foam Infiltrated with Liquid Metal as a Dielectric Capacitor

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS
Brendan Hanrahan, Asher Leff, Alexis Sesar, Michael Fish, Samantha T. Jaszewski, Jaron A. Kropp, Nicholas Strnad, Jon F. Ihlefeld, Nathan Lazarus
{"title":"An Antiferroelectric-Coated Metal Foam Infiltrated with Liquid Metal as a Dielectric Capacitor","authors":"Brendan Hanrahan,&nbsp;Asher Leff,&nbsp;Alexis Sesar,&nbsp;Michael Fish,&nbsp;Samantha T. Jaszewski,&nbsp;Jaron A. Kropp,&nbsp;Nicholas Strnad,&nbsp;Jon F. Ihlefeld,&nbsp;Nathan Lazarus","doi":"10.1002/ente.202400956","DOIUrl":null,"url":null,"abstract":"<p>Nickel metal foams serve as both a substrate and bottom electrode for a dielectric capacitor using atomic-layer deposition (ALD) and a eutectic gallium–indium (EGaIn) liquid metal (LQM) counter electrode. The conformal dielectric has a composition of 6.25% Al–HfO<sub>2</sub> in the antiferroelectric phase, confirmed with polarization versus electric field measurements. Liquid EGaIn is pressure-infiltrated within the coated foams to form the dielectric capacitor. Capacitances up to 4 μF are realized. Calorimetry of the infiltrated capacitor shows a 60 J g<sup>−1</sup> latent heat upon melting a frozen EGaIn electrode, suggesting that the phase change can alleviate thermal deviations from pulsed power capacitor operation. Infiltrated capacitors are also shown to survive bending and freeze–thaw cycles. The metal foam–ALD dielectric–LQM capacitor shows a combined set of thermal and electrical properties not available in other classes of capacitors.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400956","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Nickel metal foams serve as both a substrate and bottom electrode for a dielectric capacitor using atomic-layer deposition (ALD) and a eutectic gallium–indium (EGaIn) liquid metal (LQM) counter electrode. The conformal dielectric has a composition of 6.25% Al–HfO2 in the antiferroelectric phase, confirmed with polarization versus electric field measurements. Liquid EGaIn is pressure-infiltrated within the coated foams to form the dielectric capacitor. Capacitances up to 4 μF are realized. Calorimetry of the infiltrated capacitor shows a 60 J g−1 latent heat upon melting a frozen EGaIn electrode, suggesting that the phase change can alleviate thermal deviations from pulsed power capacitor operation. Infiltrated capacitors are also shown to survive bending and freeze–thaw cycles. The metal foam–ALD dielectric–LQM capacitor shows a combined set of thermal and electrical properties not available in other classes of capacitors.

Abstract Image

液体金属渗透反铁电包覆泡沫金属作为介质电容器
使用原子层沉积(ALD)和共晶镓铟(EGaIn)液态金属(LQM)对电极作为介质电容器的衬底和底电极。共形介质在反铁电相中含有6.25%的Al-HfO2,通过极化与电场测量得到了证实。液体EGaIn在被涂覆的泡沫内被压力渗透以形成介电电容器。电容可达4 μF。渗透电容器的量热分析显示,在熔化冻结的EGaIn电极时,渗透电容器的潜热为60 J g−1,表明相变可以减轻脉冲功率电容器工作时的热偏差。渗透电容器也能经受住弯曲和冻融循环。金属泡沫- ald介质- lqm电容器具有其他类型电容器所不具备的热学和电学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信