Fiber-Integrated Diamond Quantum Sensor for High-Voltage Current Measurements

Qihui Liu, Shaoxiong Nie, Xiao Peng, Yaochen Zhu, Nan Wang, Yuqiang Hu, Xin Luo, Chun li, Maoheng Jing, Chunji Zhang, Wei Liu, Hao Chen, Jiangong Cheng, Zhenyu Wu
{"title":"Fiber-Integrated Diamond Quantum Sensor for High-Voltage Current Measurements","authors":"Qihui Liu,&nbsp;Shaoxiong Nie,&nbsp;Xiao Peng,&nbsp;Yaochen Zhu,&nbsp;Nan Wang,&nbsp;Yuqiang Hu,&nbsp;Xin Luo,&nbsp;Chun li,&nbsp;Maoheng Jing,&nbsp;Chunji Zhang,&nbsp;Wei Liu,&nbsp;Hao Chen,&nbsp;Jiangong Cheng,&nbsp;Zhenyu Wu","doi":"10.1002/adsr.202400106","DOIUrl":null,"url":null,"abstract":"<p>In power network systems, there is an urgent demand for highly accurate and miniaturized sensors, owing to their high safety level and limited installation space. Current sensors in high-voltage grids are required to accommodate harsh environments and provide accurate measurements of several kiloamperes. Thus, this study proposed an integrated quantum diamond sensor to facilitate high-accuracy, large-dynamic-range current measurements. The design incorporated optical fiber and directional microwave (MW) antennas to drive the diamond sensor, which significantly reduced the size and power consumption on the high-voltage side. Remote-control and demodulation systems are installed more than 10 m away from the low-voltage side. The proposed approach achieved zero power consumption on the high-voltage side and ensured efficient signal transmission. A passive diamond probe manufactured using microfabrication processes facilitated miniaturization and practical deployment. Through parameter optimization, a magnetic detection sensitivity of 4.86 nT·Hz<sup>−1/2</sup> is achieved at a safe distance of 11 m, which can be further optimized to 0.77 nT·Hz<sup>−1/2</sup> with enhanced MW power. This sensor achieved a current measurement error of ±0.4% in the 1000 A measurement range. Thus, this study provides a new solution for the application of diamond quantum sensors in power systems.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400106","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In power network systems, there is an urgent demand for highly accurate and miniaturized sensors, owing to their high safety level and limited installation space. Current sensors in high-voltage grids are required to accommodate harsh environments and provide accurate measurements of several kiloamperes. Thus, this study proposed an integrated quantum diamond sensor to facilitate high-accuracy, large-dynamic-range current measurements. The design incorporated optical fiber and directional microwave (MW) antennas to drive the diamond sensor, which significantly reduced the size and power consumption on the high-voltage side. Remote-control and demodulation systems are installed more than 10 m away from the low-voltage side. The proposed approach achieved zero power consumption on the high-voltage side and ensured efficient signal transmission. A passive diamond probe manufactured using microfabrication processes facilitated miniaturization and practical deployment. Through parameter optimization, a magnetic detection sensitivity of 4.86 nT·Hz−1/2 is achieved at a safe distance of 11 m, which can be further optimized to 0.77 nT·Hz−1/2 with enhanced MW power. This sensor achieved a current measurement error of ±0.4% in the 1000 A measurement range. Thus, this study provides a new solution for the application of diamond quantum sensors in power systems.

Abstract Image

用于高压电流测量的光纤集成金刚石量子传感器
在电网系统中,由于传感器的安全性高、安装空间有限,对高精度、小型化的传感器有着迫切的需求。高压电网中的电流传感器需要适应恶劣的环境,并提供几千安培的精确测量。因此,本研究提出了一种集成量子金刚石传感器,以实现高精度、大动态范围的电流测量。该设计采用了光纤和定向微波(MW)天线来驱动金刚石传感器,这大大减少了高压侧的尺寸和功耗。远程控制和解调系统应安装在距离低压侧10m以上的地方。该方法在高压侧实现了零功耗,保证了信号的高效传输。采用微加工工艺制造的被动金刚石探针便于小型化和实际部署。通过参数优化,在安全距离为11 m时,磁探测灵敏度为4.86 nT·Hz−1/2,在增强MW功率的情况下,磁探测灵敏度可进一步优化至0.77 nT·Hz−1/2。该传感器在1000 a的测量范围内实现了±0.4%的电流测量误差。因此,本研究为金刚石量子传感器在电力系统中的应用提供了新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信