Nonlinear joint inversion of Rayleigh and Love wave dispersion curves based on Pearson correlation coefficient and thickness mean sharing

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Daiguang Fu, Liming Zhou, Shuangxi Zhang, Mengkui Li
{"title":"Nonlinear joint inversion of Rayleigh and Love wave dispersion curves based on Pearson correlation coefficient and thickness mean sharing","authors":"Daiguang Fu,&nbsp;Liming Zhou,&nbsp;Shuangxi Zhang,&nbsp;Mengkui Li","doi":"10.1111/1365-2478.13639","DOIUrl":null,"url":null,"abstract":"<p>The joint inversion of Rayleigh and Love waves plays a crucial role in mitigating the non-uniqueness of surface wave inversion results and enhancing the stability of these inversions. Existing approaches to the joint inversion of Rayleigh and Love wave dispersion curves, which rely on conventional objective functions, often struggle with complex stratigraphic configurations and yield results of limited accuracy. This study introduces two novel nonlinear joint inversion techniques for Rayleigh and Love waves: Pearson correlation coefficient and thickness mean sharing. The Pearson correlation coefficient approach employs the Pearson correlation coefficient and alternating iterative objective functions to synchronize the shear wave velocity structures derived from Rayleigh and Love waves, thereby enhancing the accuracy of the joint inversion. Conversely, the thickness mean sharing method computes an average of the thickness values obtained in each iteration of the inversion, utilizing the traditional joint inversion objective function. Tests on three distinct stratigraphic structures—characterized by increasing velocity, high-speed hard interlayers and low-speed soft interlayers—as well as on measured data, demonstrate that the proposed methods significantly improve the stability and accuracy of nonlinear joint inversion.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 1","pages":"213-232"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13639","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The joint inversion of Rayleigh and Love waves plays a crucial role in mitigating the non-uniqueness of surface wave inversion results and enhancing the stability of these inversions. Existing approaches to the joint inversion of Rayleigh and Love wave dispersion curves, which rely on conventional objective functions, often struggle with complex stratigraphic configurations and yield results of limited accuracy. This study introduces two novel nonlinear joint inversion techniques for Rayleigh and Love waves: Pearson correlation coefficient and thickness mean sharing. The Pearson correlation coefficient approach employs the Pearson correlation coefficient and alternating iterative objective functions to synchronize the shear wave velocity structures derived from Rayleigh and Love waves, thereby enhancing the accuracy of the joint inversion. Conversely, the thickness mean sharing method computes an average of the thickness values obtained in each iteration of the inversion, utilizing the traditional joint inversion objective function. Tests on three distinct stratigraphic structures—characterized by increasing velocity, high-speed hard interlayers and low-speed soft interlayers—as well as on measured data, demonstrate that the proposed methods significantly improve the stability and accuracy of nonlinear joint inversion.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信