Effects of Cu Coating Addition on Mechanical Properties of Vacuum Brazed Joints

IF 1.9 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Leilei Wang, Nian Li, Xinlong Wei, Xiang Ling, Xiaoping Su, Yichuan Wang
{"title":"Effects of Cu Coating Addition on Mechanical Properties of Vacuum Brazed Joints","authors":"Leilei Wang,&nbsp;Nian Li,&nbsp;Xinlong Wei,&nbsp;Xiang Ling,&nbsp;Xiaoping Su,&nbsp;Yichuan Wang","doi":"10.1002/srin.202400286","DOIUrl":null,"url":null,"abstract":"<p>In this study, a copper brazing filler metal coating is fabricated on a 304 stainless steel (304SS) substrate using an electroplating technique. The effect of using electroplated copper brazing filler metal coatings compared to pure copper foil of the same thickness for vacuum brazing of stainless steel joints is investigated. The microstructure and microhardness of the brazed joints are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and a Vickers hardness tester. The shear strength of the brazed joints is measured using an INSTRON 5869 universal testing machine. The results indicate that the electroplated Cu coating is dense, predominantly with a single cubic phase, with a few copper particles aggregating on the surface. Under electroplating conditions of 20 mA cm<sup>−2</sup> for 1 h, the coating thickness was 56 μm. The shear strength of the brazed joint with this coating reached a maximum of 333.7 MPa, which is higher than that of a brazed joint with a 60 μm thick copper foil, which exhibits a shear strength of 303.2 MPa. The shear strength of the brazed joints shows an initial increase followed by a decrease as current density and electroplating time increase. This study provides significant technical support for brazing complex shapes or precision components. It suggests a method to simplify the brazing process, reduce production costs, and enhance the strength of brazed joints.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400286","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a copper brazing filler metal coating is fabricated on a 304 stainless steel (304SS) substrate using an electroplating technique. The effect of using electroplated copper brazing filler metal coatings compared to pure copper foil of the same thickness for vacuum brazing of stainless steel joints is investigated. The microstructure and microhardness of the brazed joints are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and a Vickers hardness tester. The shear strength of the brazed joints is measured using an INSTRON 5869 universal testing machine. The results indicate that the electroplated Cu coating is dense, predominantly with a single cubic phase, with a few copper particles aggregating on the surface. Under electroplating conditions of 20 mA cm−2 for 1 h, the coating thickness was 56 μm. The shear strength of the brazed joint with this coating reached a maximum of 333.7 MPa, which is higher than that of a brazed joint with a 60 μm thick copper foil, which exhibits a shear strength of 303.2 MPa. The shear strength of the brazed joints shows an initial increase followed by a decrease as current density and electroplating time increase. This study provides significant technical support for brazing complex shapes or precision components. It suggests a method to simplify the brazing process, reduce production costs, and enhance the strength of brazed joints.

Abstract Image

添加Cu涂层对真空钎焊接头力学性能的影响
在本研究中,采用电镀技术在304不锈钢(304SS)基体上制备了铜钎焊填充金属涂层。研究了电镀铜填充金属镀层与相同厚度的纯铜箔在不锈钢接头真空钎焊中的效果。采用x射线衍射(XRD)、扫描电镜(SEM)和维氏硬度计对钎焊接头的显微组织和显微硬度进行了表征。用INSTRON 5869万能试验机测量钎焊接头的抗剪强度。结果表明:镀铜层致密,以单立方相为主,表面有少量铜颗粒聚集;在20 mA cm−2条件下电镀1 h,镀层厚度为56 μm。钎焊接头的抗剪强度最高可达333.7 MPa,高于60 μm厚铜箔钎焊接头的303.2 MPa。随着电流密度和电镀时间的增加,钎焊接头的抗剪强度呈现先增大后减小的趋势。该研究为复杂形状或精密部件的钎焊提供了重要的技术支持。提出了一种简化钎焊工艺,降低生产成本,提高钎焊接头强度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信