Non-Autoregressive Translation Algorithm Based on LLM Knowledge Distillation in English Corpus

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Fang Ju, Weihui Wang
{"title":"Non-Autoregressive Translation Algorithm Based on LLM Knowledge Distillation in English Corpus","authors":"Fang Ju,&nbsp;Weihui Wang","doi":"10.1002/eng2.13077","DOIUrl":null,"url":null,"abstract":"<p>Although significant advancements have been made in the quality of machine translation by large-scale language models, their high computational costs and resource consumption have hindered their widespread adoption in practical applications. So this research introduces an English corpus-based machine translation algorithm that leverages knowledge distillation from large language model, with the goal of enhancing translation quality and reducing the computational demands of the model. Initially, we conducted a thorough analysis of the English corpus to identify prevalent language patterns and structures. Following this, we developed a knowledge distillation approach that transfers the translation expertise of a large teacher model to a smaller student model, thereby achieving increased translation accuracy and efficiency. We designed a dynamic temperature hyperparameter distillation strategy that effectively enhances the precision of translations. In the experimental phase, we utilized several standard English corpora to train and assess our algorithm. The findings indicate that, compared to current machine translation systems, our method significantly reduces the need for computational resources while preserving translation quality.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.13077","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.13077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Although significant advancements have been made in the quality of machine translation by large-scale language models, their high computational costs and resource consumption have hindered their widespread adoption in practical applications. So this research introduces an English corpus-based machine translation algorithm that leverages knowledge distillation from large language model, with the goal of enhancing translation quality and reducing the computational demands of the model. Initially, we conducted a thorough analysis of the English corpus to identify prevalent language patterns and structures. Following this, we developed a knowledge distillation approach that transfers the translation expertise of a large teacher model to a smaller student model, thereby achieving increased translation accuracy and efficiency. We designed a dynamic temperature hyperparameter distillation strategy that effectively enhances the precision of translations. In the experimental phase, we utilized several standard English corpora to train and assess our algorithm. The findings indicate that, compared to current machine translation systems, our method significantly reduces the need for computational resources while preserving translation quality.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信