Design and Performance Analysis of a Novel Asymmetrical Multilevel Inverter Structure With Reduced Components Using the Half-Height Modulation Technique

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Naznin Sultana Tuhin, Yeasir Arafat
{"title":"Design and Performance Analysis of a Novel Asymmetrical Multilevel Inverter Structure With Reduced Components Using the Half-Height Modulation Technique","authors":"Naznin Sultana Tuhin,&nbsp;Yeasir Arafat","doi":"10.1155/etep/5546944","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper presents a novel single-phase 37-level asymmetrical multilevel inverter with fewer components and less voltage stress at the switches which reduces the cost of the inverter and increases efficiency. Existing multilevel inverters utilize a higher number of components to provide better output quality which increases the cost and the complexity. The proposed inverter circuit generates 37 levels of output voltage by utilizing only four DC sources and thirteen IGBT switches. Reduction of the total harmonic distortion (THD) and improvement of the output quality of the proposed structure are performed by implementing the half-height modulation technique. The number of components, cost factor, THD, and efficiency of the proposed structure have been compared to those of the inverter structures that are currently in use. The performance of the proposed structure is evaluated by MATLAB/Simulink and simulation results show that the proposed circuit produces higher-level output voltage with reduced THD by utilizing less components/levels and low-rated devices which makes the proposed topology cost-effective and efficient compared to other existing topologies. Also, the proposed structure offers stable performance under a variety of load conditions. Multiple input sources and less distorted output of the proposed topology make it appropriate for renewable energy generating systems which contribute to the reliable, efficient, and sustainable generation of electricity.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/etep/5546944","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/etep/5546944","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel single-phase 37-level asymmetrical multilevel inverter with fewer components and less voltage stress at the switches which reduces the cost of the inverter and increases efficiency. Existing multilevel inverters utilize a higher number of components to provide better output quality which increases the cost and the complexity. The proposed inverter circuit generates 37 levels of output voltage by utilizing only four DC sources and thirteen IGBT switches. Reduction of the total harmonic distortion (THD) and improvement of the output quality of the proposed structure are performed by implementing the half-height modulation technique. The number of components, cost factor, THD, and efficiency of the proposed structure have been compared to those of the inverter structures that are currently in use. The performance of the proposed structure is evaluated by MATLAB/Simulink and simulation results show that the proposed circuit produces higher-level output voltage with reduced THD by utilizing less components/levels and low-rated devices which makes the proposed topology cost-effective and efficient compared to other existing topologies. Also, the proposed structure offers stable performance under a variety of load conditions. Multiple input sources and less distorted output of the proposed topology make it appropriate for renewable energy generating systems which contribute to the reliable, efficient, and sustainable generation of electricity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Transactions on Electrical Energy Systems
International Transactions on Electrical Energy Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
6.70
自引率
8.70%
发文量
342
期刊介绍: International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems. Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信