Gregory Berkolaiko, Yaiza Canzani, Graham Cox, Jeremy L. Marzuola
{"title":"Homology of spectral minimal partitions","authors":"Gregory Berkolaiko, Yaiza Canzani, Graham Cox, Jeremy L. Marzuola","doi":"10.1112/jlms.70065","DOIUrl":null,"url":null,"abstract":"<p>A spectral minimal partition of a manifold is its decomposition into disjoint open sets that minimizes a spectral energy functional. It is known that bipartite spectral minimal partitions coincide with nodal partitions of Courant-sharp Laplacian eigenfunctions. However, almost all minimal partitions are non-bipartite. To study those, we define a modified Laplacian operator and prove that the nodal partitions of its Courant-sharp eigenfunctions are minimal within a certain topological class of partitions. This yields new results in the non-bipartite case and recovers the above known result in the bipartite case. Our approach is based on tools from algebraic topology, which we illustrate by a number of examples where the topological types of partitions are characterized by relative homology.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70065","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A spectral minimal partition of a manifold is its decomposition into disjoint open sets that minimizes a spectral energy functional. It is known that bipartite spectral minimal partitions coincide with nodal partitions of Courant-sharp Laplacian eigenfunctions. However, almost all minimal partitions are non-bipartite. To study those, we define a modified Laplacian operator and prove that the nodal partitions of its Courant-sharp eigenfunctions are minimal within a certain topological class of partitions. This yields new results in the non-bipartite case and recovers the above known result in the bipartite case. Our approach is based on tools from algebraic topology, which we illustrate by a number of examples where the topological types of partitions are characterized by relative homology.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.