Organic probes for three-photon fluorescence imaging in NIR-II window: Design, applications, and perspectives

IF 24.5 Q1 CHEMISTRY, PHYSICAL
Yuliang Yang, Cui Cen, Lijun Kan, Qi Zhao, Zhongming Huang, Shengliang Li
{"title":"Organic probes for three-photon fluorescence imaging in NIR-II window: Design, applications, and perspectives","authors":"Yuliang Yang,&nbsp;Cui Cen,&nbsp;Lijun Kan,&nbsp;Qi Zhao,&nbsp;Zhongming Huang,&nbsp;Shengliang Li","doi":"10.1002/idm2.12217","DOIUrl":null,"url":null,"abstract":"<p>Three-photon fluorescence (3PF) imaging is an emerging technology for imaging deep-tissue submicroscopic structures by nonlinearly redshifting the excitation wavelength to the second near-infrared (NIR-II) window; thus, this approach has great advantages, including deep penetration depth, good spatial resolution, low background, and a high signal-to-noise ratio. 3PF imaging has been demonstrated to be a powerful tool for noninvasively visualizing all kinds of deep tissues in recent years. Benefiting from excellent biosecurity and structural controllability, the development of organic 3PF probes is highly important for advancing 3PF imaging in vivo. However, there is no summary of the generalizability of the design and recent progress in organic 3PF probes. Herein, this review introduces the fundamental principle of 3PF imaging and highlights the advantages of 3PF bioimaging. The molecular design of these organic 3PF probes is also summarized based on relative optical indices. Furthermore, different 3PF imaging application scenarios are listed in detail. In the end, the main challenges, significance of probe exploitation, and prospective orientation of organic probes for precise 3PF imaging are proposed and discussed for promoting future applications and clinical translation.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 1","pages":"109-137"},"PeriodicalIF":24.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12217","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Three-photon fluorescence (3PF) imaging is an emerging technology for imaging deep-tissue submicroscopic structures by nonlinearly redshifting the excitation wavelength to the second near-infrared (NIR-II) window; thus, this approach has great advantages, including deep penetration depth, good spatial resolution, low background, and a high signal-to-noise ratio. 3PF imaging has been demonstrated to be a powerful tool for noninvasively visualizing all kinds of deep tissues in recent years. Benefiting from excellent biosecurity and structural controllability, the development of organic 3PF probes is highly important for advancing 3PF imaging in vivo. However, there is no summary of the generalizability of the design and recent progress in organic 3PF probes. Herein, this review introduces the fundamental principle of 3PF imaging and highlights the advantages of 3PF bioimaging. The molecular design of these organic 3PF probes is also summarized based on relative optical indices. Furthermore, different 3PF imaging application scenarios are listed in detail. In the end, the main challenges, significance of probe exploitation, and prospective orientation of organic probes for precise 3PF imaging are proposed and discussed for promoting future applications and clinical translation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信