{"title":"Multi-Objective Federated Averaging Algorithm","authors":"Daoqu Geng, Shouzheng Wang, Yihang Zhang","doi":"10.1111/exsy.13761","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The recent global trend is the convergence of information and communications technology (ICT). By applying ICT in various fields such as the humanities, new types of products and services are created, and new values that help people's lives can be created. AI can be selected as a representative technology in such convergence ICT. However, applying AI technology to actual production requires ensuring data security. Federated learning (FL) can achieve secure sharing of data, where all parties participate in model training locally and upload it to the server for aggregation. The data never leaves the parties involved, thus solving the problems of data privacy and data silos. However, FL faces issues such as high communication cost, imbalanced performance distribution among participants, and low privacy protection. To achieve a balance between model accuracy, communication cost, fairness, and privacy, this paper proposes a multi-objective optimization-based FL algorithm (M-FedAvg). The multi-objective optimization problem of maximising the accuracy of the global model, minimising the communication cost, minimising the variance of the accuracy, and minimising the privacy budget is solved by NSGA-III. The experimental results show that the algorithm proposed can effectively reduce the communication cost of FL and achieve privacy protection for participants without affecting the accuracy of the global model.</p>\n </div>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13761","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The recent global trend is the convergence of information and communications technology (ICT). By applying ICT in various fields such as the humanities, new types of products and services are created, and new values that help people's lives can be created. AI can be selected as a representative technology in such convergence ICT. However, applying AI technology to actual production requires ensuring data security. Federated learning (FL) can achieve secure sharing of data, where all parties participate in model training locally and upload it to the server for aggregation. The data never leaves the parties involved, thus solving the problems of data privacy and data silos. However, FL faces issues such as high communication cost, imbalanced performance distribution among participants, and low privacy protection. To achieve a balance between model accuracy, communication cost, fairness, and privacy, this paper proposes a multi-objective optimization-based FL algorithm (M-FedAvg). The multi-objective optimization problem of maximising the accuracy of the global model, minimising the communication cost, minimising the variance of the accuracy, and minimising the privacy budget is solved by NSGA-III. The experimental results show that the algorithm proposed can effectively reduce the communication cost of FL and achieve privacy protection for participants without affecting the accuracy of the global model.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.