Synthesis of PPy/rGO/NiCoFe2O4 Ternary Composite and rGO/NiCoFe2O4 Binary Composite Hybrid Materials for the Fabrication of Flexible Carbon Cloth Electrodes for Supercapacitors
{"title":"Synthesis of PPy/rGO/NiCoFe2O4 Ternary Composite and rGO/NiCoFe2O4 Binary Composite Hybrid Materials for the Fabrication of Flexible Carbon Cloth Electrodes for Supercapacitors","authors":"Ansari Novman Nabeel, Alok Jain, Talal Alharbi, Akbar Ahmad, Dilawar Husain, Sajid Naeem","doi":"10.1002/est2.70105","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study presents a simple, scalable approach for synthesizing binary and ternary composites tailored for electrode materials, with a focus on supercapacitor applications. The composites were fabricated by integrating reduced graphene oxide (rGO) with NiCoFe<sub>2</sub>O<sub>4</sub> metal oxides and the conductive polymer polypyrrole (PPy). The significance of this work lies in the development of supercapacitors, which are highly valued for their superior energy density, fast charge and discharge rates, prolonged life cycle, and cost-effectiveness. The binary composite, rGO/NiCoFe<sub>2</sub>O<sub>4</sub>, was synthesized using a sol–gel auto-combustion method, with carbon cloth serving as the electrode substrate for electrochemical testing. Electrochemical analysis showed that the rGO/NiCoFe<sub>2</sub>O<sub>4</sub> binary composite exhibited a specific capacitance of 154 F/g at a scan rate of 10 mV/s. The addition of PPy resulted in the formation of the ternary composite, PPy/rGO/NiCoFe<sub>2</sub>O<sub>4</sub>, which demonstrated a markedly improved specific capacitance of 210 F/g under the same conditions, underscoring the synergistic effect of PPy. Furthermore, galvanostatic charge–discharge (GCD) analysis revealed specific capacitance values of 222.5 F/g at 1 A/g and 145 F/g at 2 A/g for the ternary composite, compared to 157.1 F/g and 110 F/g for the binary composite. The findings of this investigation emphasize the significant potential of the PPy/rGO/NiCoFe<sub>2</sub>O<sub>4</sub> composite for the development of high-performance supercapacitors, leveraging the combined benefits of rGO, NiCoFe<sub>2</sub>O<sub>4</sub>, and PPy for superior energy storage capabilities.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a simple, scalable approach for synthesizing binary and ternary composites tailored for electrode materials, with a focus on supercapacitor applications. The composites were fabricated by integrating reduced graphene oxide (rGO) with NiCoFe2O4 metal oxides and the conductive polymer polypyrrole (PPy). The significance of this work lies in the development of supercapacitors, which are highly valued for their superior energy density, fast charge and discharge rates, prolonged life cycle, and cost-effectiveness. The binary composite, rGO/NiCoFe2O4, was synthesized using a sol–gel auto-combustion method, with carbon cloth serving as the electrode substrate for electrochemical testing. Electrochemical analysis showed that the rGO/NiCoFe2O4 binary composite exhibited a specific capacitance of 154 F/g at a scan rate of 10 mV/s. The addition of PPy resulted in the formation of the ternary composite, PPy/rGO/NiCoFe2O4, which demonstrated a markedly improved specific capacitance of 210 F/g under the same conditions, underscoring the synergistic effect of PPy. Furthermore, galvanostatic charge–discharge (GCD) analysis revealed specific capacitance values of 222.5 F/g at 1 A/g and 145 F/g at 2 A/g for the ternary composite, compared to 157.1 F/g and 110 F/g for the binary composite. The findings of this investigation emphasize the significant potential of the PPy/rGO/NiCoFe2O4 composite for the development of high-performance supercapacitors, leveraging the combined benefits of rGO, NiCoFe2O4, and PPy for superior energy storage capabilities.