Synthesis of PPy/rGO/NiCoFe2O4 Ternary Composite and rGO/NiCoFe2O4 Binary Composite Hybrid Materials for the Fabrication of Flexible Carbon Cloth Electrodes for Supercapacitors

Energy Storage Pub Date : 2025-01-06 DOI:10.1002/est2.70105
Ansari Novman Nabeel, Alok Jain, Talal Alharbi, Akbar Ahmad, Dilawar Husain, Sajid Naeem
{"title":"Synthesis of PPy/rGO/NiCoFe2O4 Ternary Composite and rGO/NiCoFe2O4 Binary Composite Hybrid Materials for the Fabrication of Flexible Carbon Cloth Electrodes for Supercapacitors","authors":"Ansari Novman Nabeel,&nbsp;Alok Jain,&nbsp;Talal Alharbi,&nbsp;Akbar Ahmad,&nbsp;Dilawar Husain,&nbsp;Sajid Naeem","doi":"10.1002/est2.70105","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study presents a simple, scalable approach for synthesizing binary and ternary composites tailored for electrode materials, with a focus on supercapacitor applications. The composites were fabricated by integrating reduced graphene oxide (rGO) with NiCoFe<sub>2</sub>O<sub>4</sub> metal oxides and the conductive polymer polypyrrole (PPy). The significance of this work lies in the development of supercapacitors, which are highly valued for their superior energy density, fast charge and discharge rates, prolonged life cycle, and cost-effectiveness. The binary composite, rGO/NiCoFe<sub>2</sub>O<sub>4</sub>, was synthesized using a sol–gel auto-combustion method, with carbon cloth serving as the electrode substrate for electrochemical testing. Electrochemical analysis showed that the rGO/NiCoFe<sub>2</sub>O<sub>4</sub> binary composite exhibited a specific capacitance of 154 F/g at a scan rate of 10 mV/s. The addition of PPy resulted in the formation of the ternary composite, PPy/rGO/NiCoFe<sub>2</sub>O<sub>4</sub>, which demonstrated a markedly improved specific capacitance of 210 F/g under the same conditions, underscoring the synergistic effect of PPy. Furthermore, galvanostatic charge–discharge (GCD) analysis revealed specific capacitance values of 222.5 F/g at 1 A/g and 145 F/g at 2 A/g for the ternary composite, compared to 157.1 F/g and 110 F/g for the binary composite. The findings of this investigation emphasize the significant potential of the PPy/rGO/NiCoFe<sub>2</sub>O<sub>4</sub> composite for the development of high-performance supercapacitors, leveraging the combined benefits of rGO, NiCoFe<sub>2</sub>O<sub>4</sub>, and PPy for superior energy storage capabilities.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a simple, scalable approach for synthesizing binary and ternary composites tailored for electrode materials, with a focus on supercapacitor applications. The composites were fabricated by integrating reduced graphene oxide (rGO) with NiCoFe2O4 metal oxides and the conductive polymer polypyrrole (PPy). The significance of this work lies in the development of supercapacitors, which are highly valued for their superior energy density, fast charge and discharge rates, prolonged life cycle, and cost-effectiveness. The binary composite, rGO/NiCoFe2O4, was synthesized using a sol–gel auto-combustion method, with carbon cloth serving as the electrode substrate for electrochemical testing. Electrochemical analysis showed that the rGO/NiCoFe2O4 binary composite exhibited a specific capacitance of 154 F/g at a scan rate of 10 mV/s. The addition of PPy resulted in the formation of the ternary composite, PPy/rGO/NiCoFe2O4, which demonstrated a markedly improved specific capacitance of 210 F/g under the same conditions, underscoring the synergistic effect of PPy. Furthermore, galvanostatic charge–discharge (GCD) analysis revealed specific capacitance values of 222.5 F/g at 1 A/g and 145 F/g at 2 A/g for the ternary composite, compared to 157.1 F/g and 110 F/g for the binary composite. The findings of this investigation emphasize the significant potential of the PPy/rGO/NiCoFe2O4 composite for the development of high-performance supercapacitors, leveraging the combined benefits of rGO, NiCoFe2O4, and PPy for superior energy storage capabilities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信