Amanda L. Cox, Marian Muste, Venkatesh Merwade, Ibrahim Demir, J. Toby Minear, Sayan Dey, Chung-Yuan Liang, Yusuf Sermet
{"title":"Engaging the Earth Science and Engineering Communities in Developing A River Morphology Information System (RIMORPHIS)","authors":"Amanda L. Cox, Marian Muste, Venkatesh Merwade, Ibrahim Demir, J. Toby Minear, Sayan Dey, Chung-Yuan Liang, Yusuf Sermet","doi":"10.1111/1752-1688.13252","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>River morphology data are critical for understanding and studying river processes and for managing rivers for multiple socio-economic uses. While such data have been extensively acquired, several issues hinder their use such as data accessibility, various data formats, lack of data models for storage, and lack of processing tools to assemble data in products readily usable for research, management, and education. A multi-university research team has prototyped a web-based river morphology information system (RIMORPHIS) for hosting and creating new information (e.g., terrain and material composition data) and data processing tools for the broader earth science communities. The RIMORPHIS design principles include: (i) broad access via a publicly and freely available platform-independent system; (ii) flexibility in handling existing and future data types; (iii) user-friendly and interactive interfaces; and (iv) interoperability and scalability to ensure platform sustainability. Developing such an ambitious community resource is only possible and impactful by continuously engaging stakeholders from the project inception. This paper highlights the research team's strategy and activities to engage with river morphology data producers and potential users from academia, research, and practice. The paper also details outcomes of stakeholder engagement and illustrates how these interactions are positively shaping RIMORPHIS development and its path to long-term sustainability.</p>\n </div>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"61 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13252","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
River morphology data are critical for understanding and studying river processes and for managing rivers for multiple socio-economic uses. While such data have been extensively acquired, several issues hinder their use such as data accessibility, various data formats, lack of data models for storage, and lack of processing tools to assemble data in products readily usable for research, management, and education. A multi-university research team has prototyped a web-based river morphology information system (RIMORPHIS) for hosting and creating new information (e.g., terrain and material composition data) and data processing tools for the broader earth science communities. The RIMORPHIS design principles include: (i) broad access via a publicly and freely available platform-independent system; (ii) flexibility in handling existing and future data types; (iii) user-friendly and interactive interfaces; and (iv) interoperability and scalability to ensure platform sustainability. Developing such an ambitious community resource is only possible and impactful by continuously engaging stakeholders from the project inception. This paper highlights the research team's strategy and activities to engage with river morphology data producers and potential users from academia, research, and practice. The paper also details outcomes of stakeholder engagement and illustrates how these interactions are positively shaping RIMORPHIS development and its path to long-term sustainability.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.