Direct laser active brazing of 316Ti to alumina

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Jian Feng, Marion Herrmann, Antonio Hurtado
{"title":"Direct laser active brazing of 316Ti to alumina","authors":"Jian Feng,&nbsp;Marion Herrmann,&nbsp;Antonio Hurtado","doi":"10.1111/ijac.14980","DOIUrl":null,"url":null,"abstract":"<p>This work addresses the challenges in brazing thermohydraulic sealings involving dissimilar materials, specifically 316Ti stainless steel and alumina, which have significantly different coefficients of thermal expansion (CTEs) and elastic constants. Traditional brazing methods require complex interlayers or extensive metallization steps, leading to issues such as dimensional changes, braze voids, and inadequate corrosion resistance due to prolonged high-temperature exposure. A novel laser-based brazing technique utilizing a diode laser is introduced to create high-quality, localized joints while preserving the integrity of the parent materials. The study systematically optimizes laser process parameters using finite-element modeling and the Taguchi method to achieve the desired bead geometry and thermal stress distribution with minimal heat input. Comparative analysis between laser active brazing (LAB) and conventional furnace brazing was conducted through metallography, shear testing, and autoclave testing. Results indicate that LAB parameters significantly affect bead thickness and shear strength, with laser-brazed joints demonstrating superior quality and stability post-autoclave testing compared with furnace-brazed joints. The thermodynamic and kinetic aspects of the brazing process were also analyzed. In conclusion, the LAB method for brazing 316Ti to alumina proves to be a successful and efficient alternative, with joint properties meeting or exceeding those of traditional furnace brazing.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijac.14980","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14980","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work addresses the challenges in brazing thermohydraulic sealings involving dissimilar materials, specifically 316Ti stainless steel and alumina, which have significantly different coefficients of thermal expansion (CTEs) and elastic constants. Traditional brazing methods require complex interlayers or extensive metallization steps, leading to issues such as dimensional changes, braze voids, and inadequate corrosion resistance due to prolonged high-temperature exposure. A novel laser-based brazing technique utilizing a diode laser is introduced to create high-quality, localized joints while preserving the integrity of the parent materials. The study systematically optimizes laser process parameters using finite-element modeling and the Taguchi method to achieve the desired bead geometry and thermal stress distribution with minimal heat input. Comparative analysis between laser active brazing (LAB) and conventional furnace brazing was conducted through metallography, shear testing, and autoclave testing. Results indicate that LAB parameters significantly affect bead thickness and shear strength, with laser-brazed joints demonstrating superior quality and stability post-autoclave testing compared with furnace-brazed joints. The thermodynamic and kinetic aspects of the brazing process were also analyzed. In conclusion, the LAB method for brazing 316Ti to alumina proves to be a successful and efficient alternative, with joint properties meeting or exceeding those of traditional furnace brazing.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Applied Ceramic Technology
International Journal of Applied Ceramic Technology 工程技术-材料科学:硅酸盐
CiteScore
3.90
自引率
9.50%
发文量
280
审稿时长
4.5 months
期刊介绍: The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas: Nanotechnology applications; Ceramic Armor; Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors); Ceramic Matrix Composites; Functional Materials; Thermal and Environmental Barrier Coatings; Bioceramic Applications; Green Manufacturing; Ceramic Processing; Glass Technology; Fiber optics; Ceramics in Environmental Applications; Ceramics in Electronic, Photonic and Magnetic Applications;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信