Non-linear time history analyses of a rigid block isolated with unbonded fiber-reinforced elastomeric isolators (UFREIs): A comparison between 3D finite element and phenomenological models

IF 4.3 2区 工程技术 Q1 ENGINEERING, CIVIL
Hediyeh Sheikh, Gaetano Pianese, Rajeev Ruparathna, Niel C. Van Engelen, Gabriele Milani
{"title":"Non-linear time history analyses of a rigid block isolated with unbonded fiber-reinforced elastomeric isolators (UFREIs): A comparison between 3D finite element and phenomenological models","authors":"Hediyeh Sheikh,&nbsp;Gaetano Pianese,&nbsp;Rajeev Ruparathna,&nbsp;Niel C. Van Engelen,&nbsp;Gabriele Milani","doi":"10.1002/eqe.4263","DOIUrl":null,"url":null,"abstract":"<p>Numerical modeling represents a pivotal tool in the seismic analysis and design of structural systems, enabling the detailed prediction and examination of structural responses under seismic loading. This research conducts a comparative analysis of two numerical modeling approaches aimed at simulating the seismic response of unbonded fiber-reinforced elastomeric isolators (UFREIs). The research focuses on a finite element (FE) model developed using Abaqus and a developed phenomenological model implemented in OpenSees, outlining the development and calibration processes for each. The FE model is developed based on simple rubber material testing data, while the phenomenological model is calibrated using experimental results from cyclic shear tests conducted on the UFREI device and the FE model. The primary objective of this study is to assess the effectiveness of these modeling approaches in predicting UFREI behavior under seismic conditions. This evaluation entails comparing model predictions with experimental data obtained from unidirectional shake table tests performed on a rigid block isolated by two UFREIs. This paper highlights the distinct advantages and limitations of each model in simulating UFREI dynamic responses during seismic events. Furthermore, it provides insights into the modeling techniques and discusses the computational demands and data requirements of each model, thereby aiding in their application to various aspects of seismic analysis and design.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"54 2","pages":"449-470"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.4263","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4263","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical modeling represents a pivotal tool in the seismic analysis and design of structural systems, enabling the detailed prediction and examination of structural responses under seismic loading. This research conducts a comparative analysis of two numerical modeling approaches aimed at simulating the seismic response of unbonded fiber-reinforced elastomeric isolators (UFREIs). The research focuses on a finite element (FE) model developed using Abaqus and a developed phenomenological model implemented in OpenSees, outlining the development and calibration processes for each. The FE model is developed based on simple rubber material testing data, while the phenomenological model is calibrated using experimental results from cyclic shear tests conducted on the UFREI device and the FE model. The primary objective of this study is to assess the effectiveness of these modeling approaches in predicting UFREI behavior under seismic conditions. This evaluation entails comparing model predictions with experimental data obtained from unidirectional shake table tests performed on a rigid block isolated by two UFREIs. This paper highlights the distinct advantages and limitations of each model in simulating UFREI dynamic responses during seismic events. Furthermore, it provides insights into the modeling techniques and discusses the computational demands and data requirements of each model, thereby aiding in their application to various aspects of seismic analysis and design.

Abstract Image

非粘结纤维增强弹性体隔振器隔振刚性块的非线性时程分析:三维有限元模型与现象学模型的比较
数值模拟是结构系统地震分析和设计的关键工具,可以详细预测和检查结构在地震荷载下的反应。本文对非粘结纤维增强弹性隔震器(UFREIs)地震响应的两种数值模拟方法进行了比较分析。研究重点是使用Abaqus开发的有限元(FE)模型和在OpenSees中实现的开发现象学模型,概述了每种模型的开发和校准过程。有限元模型是基于简单的橡胶材料试验数据建立的,而现象学模型是根据UFREI装置和有限元模型进行的循环剪切试验结果进行校准的。本研究的主要目的是评估这些建模方法在地震条件下预测UFREI行为的有效性。这种评估需要将模型预测与在两个ufrei隔离的刚性块上进行的单向振动台试验获得的实验数据进行比较。本文重点介绍了各种模型在模拟地震过程中UFREI动力响应方面的优势和局限性。此外,它还提供了对建模技术的见解,并讨论了每种模型的计算需求和数据需求,从而有助于将其应用于地震分析和设计的各个方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earthquake Engineering & Structural Dynamics
Earthquake Engineering & Structural Dynamics 工程技术-工程:地质
CiteScore
7.20
自引率
13.30%
发文量
180
审稿时长
4.8 months
期刊介绍: Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following: ground motions for analysis and design geotechnical earthquake engineering probabilistic and deterministic methods of dynamic analysis experimental behaviour of structures seismic protective systems system identification risk assessment seismic code requirements methods for earthquake-resistant design and retrofit of structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信