Freezing Characteristics of Beef Chunks by Air Blast Freezing Under Different Conditions

IF 2.7 3区 农林科学 Q3 ENGINEERING, CHEMICAL
Peiyong Ni, Jiawen Yan, Xiangli Wang, Xuewen Zhang, Xiang Li
{"title":"Freezing Characteristics of Beef Chunks by Air Blast Freezing Under Different Conditions","authors":"Peiyong Ni,&nbsp;Jiawen Yan,&nbsp;Xiangli Wang,&nbsp;Xuewen Zhang,&nbsp;Xiang Li","doi":"10.1111/jfpe.70037","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In order to achieve energy-saving in fast freezing equipment, it is necessary to understand the factors that affect food freezing time. A fluid structure coupling model was established for the freezing process of beef in a freezing room. A total of 45 simulation areas were set with 9 racks and 5 beef chunks on each rack. In the model, the specific heat capacity of the packages was defined as a function of temperature. The core temperatures of the frozen load chunks instead of real beef were measured to verify the correctness of the model. The airflow velocity, air temperature and frozen product temperatures were simulated at different frozen product positions, fan outlet velocities and temperatures. The freezing rates, local Reynolds numbers and wall adjacent heat transfer coefficients were obtained for the chunks. The result shows that the uneven distribution of airflow velocity directly leads to differences in the freezing and heat transfer characteristics of each frozen product. A large vortex with lower airflow velocity and higher airflow temperature in the middle area of the quick-freezing room causes a slower freezing rate of frozen products. The highest freezing rate is 1.67 cm/h among 45 chunks, and most chunks have a freezing rate greater than 1 cm/h. The variations of the freezing rates are basically consistent with the local wall adjacent heat transfer coefficients within the range of 17.8 to 52.2 W/m<sup>2</sup> K. The findings of this article can help provide the appropriate freezing parameters, elucidate the freezing characteristics of beef and offer optimization suggestions for the freezing process of fast freezing rooms.</p>\n </div>","PeriodicalId":15932,"journal":{"name":"Journal of Food Process Engineering","volume":"48 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Process Engineering","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.70037","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to achieve energy-saving in fast freezing equipment, it is necessary to understand the factors that affect food freezing time. A fluid structure coupling model was established for the freezing process of beef in a freezing room. A total of 45 simulation areas were set with 9 racks and 5 beef chunks on each rack. In the model, the specific heat capacity of the packages was defined as a function of temperature. The core temperatures of the frozen load chunks instead of real beef were measured to verify the correctness of the model. The airflow velocity, air temperature and frozen product temperatures were simulated at different frozen product positions, fan outlet velocities and temperatures. The freezing rates, local Reynolds numbers and wall adjacent heat transfer coefficients were obtained for the chunks. The result shows that the uneven distribution of airflow velocity directly leads to differences in the freezing and heat transfer characteristics of each frozen product. A large vortex with lower airflow velocity and higher airflow temperature in the middle area of the quick-freezing room causes a slower freezing rate of frozen products. The highest freezing rate is 1.67 cm/h among 45 chunks, and most chunks have a freezing rate greater than 1 cm/h. The variations of the freezing rates are basically consistent with the local wall adjacent heat transfer coefficients within the range of 17.8 to 52.2 W/m2 K. The findings of this article can help provide the appropriate freezing parameters, elucidate the freezing characteristics of beef and offer optimization suggestions for the freezing process of fast freezing rooms.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Food Process Engineering
Journal of Food Process Engineering 工程技术-工程:化工
CiteScore
5.70
自引率
10.00%
发文量
259
审稿时长
2 months
期刊介绍: This international research journal focuses on the engineering aspects of post-production handling, storage, processing, packaging, and distribution of food. Read by researchers, food and chemical engineers, and industry experts, this is the only international journal specifically devoted to the engineering aspects of food processing. Co-Editors M. Elena Castell-Perez and Rosana Moreira, both of Texas A&M University, welcome papers covering the best original research on applications of engineering principles and concepts to food and food processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信