Advanced Mineral Deposit Mapping via Deep Learning and SVM Integration With Remote Sensing Imaging Data

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nazir Jan, Nasru Minallah, Madiha Sher, Muhammad Wasim, Shahid Khan, Amal Al-Rasheed, Hazrat Ali
{"title":"Advanced Mineral Deposit Mapping via Deep Learning and SVM Integration With Remote Sensing Imaging Data","authors":"Nazir Jan,&nbsp;Nasru Minallah,&nbsp;Madiha Sher,&nbsp;Muhammad Wasim,&nbsp;Shahid Khan,&nbsp;Amal Al-Rasheed,&nbsp;Hazrat Ali","doi":"10.1002/eng2.13031","DOIUrl":null,"url":null,"abstract":"<p>Automating mineral delineation and rock type analysis using remote sensing imaging data is a critical application of machine learning. Traditional machine learning methods often struggle with accuracy and precise map generation. This study aims to enhance performance through a refined deep learning model. In this work, we present a deep learning pipeline to map the mineral deposits in the study area. Initially, we apply a deep convolutional neural network (CNN) to a specialized mineral dataset to map mineral deposits within the study area. Subsequently, we build a hybrid model combining deep CNN layers with a support vector machine (SVM). This merger significantly improves classification accuracy from an initial 92.7% to 95.3%. In our approach, CNN layers function as feature extractors while the SVM serves as the classification model. Moreover, we conduct an evaluation of the SVM using polynomial kernels of degrees 3, 6, 9, and 12. The results indicate that the SVM with a degree of 12 achieved the highest classification accuracy, followed by degrees 9, 6, and 3. Experimental results demonstrate the effectiveness of our proposed method for classifying remote sensing imaging data, showcasing its potential for advancing mineral delineation and rock type analysis.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.13031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.13031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Automating mineral delineation and rock type analysis using remote sensing imaging data is a critical application of machine learning. Traditional machine learning methods often struggle with accuracy and precise map generation. This study aims to enhance performance through a refined deep learning model. In this work, we present a deep learning pipeline to map the mineral deposits in the study area. Initially, we apply a deep convolutional neural network (CNN) to a specialized mineral dataset to map mineral deposits within the study area. Subsequently, we build a hybrid model combining deep CNN layers with a support vector machine (SVM). This merger significantly improves classification accuracy from an initial 92.7% to 95.3%. In our approach, CNN layers function as feature extractors while the SVM serves as the classification model. Moreover, we conduct an evaluation of the SVM using polynomial kernels of degrees 3, 6, 9, and 12. The results indicate that the SVM with a degree of 12 achieved the highest classification accuracy, followed by degrees 9, 6, and 3. Experimental results demonstrate the effectiveness of our proposed method for classifying remote sensing imaging data, showcasing its potential for advancing mineral delineation and rock type analysis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信