Camille M. M. DeSisto, Zico Zandry, Telesy Feno, Borna Zareiesafandabadi, Jean Randrianasy, Jean Tiamanana, Dominique Randrianasolo, Manadina Rasolofo, George Raveloson, Franclin Zerimanana, Onja Razafindratsima, James P. Herrera, John R. Poulsen
{"title":"Functional Traits and Phylogenetic Effects Drive Germination of Lemur-Passed Seeds","authors":"Camille M. M. DeSisto, Zico Zandry, Telesy Feno, Borna Zareiesafandabadi, Jean Randrianasy, Jean Tiamanana, Dominique Randrianasolo, Manadina Rasolofo, George Raveloson, Franclin Zerimanana, Onja Razafindratsima, James P. Herrera, John R. Poulsen","doi":"10.1002/ece3.70881","DOIUrl":null,"url":null,"abstract":"<p>Frugivore-mediated seed dispersal drives ecological functioning across tropical forests. The biological mechanisms affecting seed dispersal outcomes, as well as the role of specific functional traits in plants and their dispersers, is still not well understood. To address this gap, we conducted germination experiments in eight species of captive and two species of wild lemurs, which disperse different plant species. We (1) quantified the effects of pulp removal, seed priming, and feces effects (nutrient/microbial fertilization) through gut passage as mechanisms, (2) determined the effect of frugivore species on germination, and (3) assessed how individual plant and animal traits affected two seed germination outcomes: success rates and time-to-germination. Accounting for phylogenetic non-independence of plants and estimating phylogenetic signal, we evaluated the effects of lemur gut passage and functional traits in a Bayesian framework. Seed priming during gut passage was the primary mechanism through which lemurs improved germination rates and decreased time-to-germination. Gut passage influenced the effect of seed length on germination probability but not time-to germination. Germination outcomes varied by disperser species and seed size. Furthermore, seeds passed by male lemurs were 40% more likely to germinate than those passed by female lemurs. Germination probability was more similar for closely related plant species compared to those that were more distantly related, while the plant phylogenetic effects on time-to-germination were weaker. Moreover, germination depended on experimental setting; for example, lemur gut passage decreased time-to-germination in captive, but not wild settings. Our results highlight the complexity of biological mechanisms determining seed dispersal outcomes; ecological and evolutionary factors were important drivers of germination. Considering a diversity of potential effects is critical for advancing a mechanistic understanding of species interactions and their outcomes.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70881","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70881","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Frugivore-mediated seed dispersal drives ecological functioning across tropical forests. The biological mechanisms affecting seed dispersal outcomes, as well as the role of specific functional traits in plants and their dispersers, is still not well understood. To address this gap, we conducted germination experiments in eight species of captive and two species of wild lemurs, which disperse different plant species. We (1) quantified the effects of pulp removal, seed priming, and feces effects (nutrient/microbial fertilization) through gut passage as mechanisms, (2) determined the effect of frugivore species on germination, and (3) assessed how individual plant and animal traits affected two seed germination outcomes: success rates and time-to-germination. Accounting for phylogenetic non-independence of plants and estimating phylogenetic signal, we evaluated the effects of lemur gut passage and functional traits in a Bayesian framework. Seed priming during gut passage was the primary mechanism through which lemurs improved germination rates and decreased time-to-germination. Gut passage influenced the effect of seed length on germination probability but not time-to germination. Germination outcomes varied by disperser species and seed size. Furthermore, seeds passed by male lemurs were 40% more likely to germinate than those passed by female lemurs. Germination probability was more similar for closely related plant species compared to those that were more distantly related, while the plant phylogenetic effects on time-to-germination were weaker. Moreover, germination depended on experimental setting; for example, lemur gut passage decreased time-to-germination in captive, but not wild settings. Our results highlight the complexity of biological mechanisms determining seed dispersal outcomes; ecological and evolutionary factors were important drivers of germination. Considering a diversity of potential effects is critical for advancing a mechanistic understanding of species interactions and their outcomes.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.