{"title":"Thiacloprid Exposure Induces Oxidative Stress, Endoplasmic Reticulum Stress, and Apoptosis in the Liver of Mauremys reevesii","authors":"Shuqin Lin, Yunjuan Xiao, Siyu Li, Liyan Tang, Haitao Shi, Meiling Hong, Li Ding","doi":"10.1002/ece3.70936","DOIUrl":null,"url":null,"abstract":"<p>Among neonicotinoid insecticides, thiacloprid (THI) is extensively utilized in agricultural practices, which poses a potential toxicity risk to aquatic fauna. Turtles, integral to aquatic ecosystems, have not yet been comprehensively assessed for their vulnerability to THI exposure. In this study, we aimed to evaluate the effects of THI on oxidative stress, endoplasmic reticulum stress (ERS), and apoptosis in aquatic turtles. We categorized <i>Mauremys reevesii</i> into three groups: a control group and two experimental groups exposed to environmentally relevant (4.5 μg/mL) and high (15 mg/mL) concentrations of THI, respectively. Transcriptome analysis revealed that genes significantly associated with the elimination of superoxide radicals, organelle inner membrane functions, peroxiredoxin activity, and apoptotic pathways were abundantly expressed in the high-concentration THI group. Notably, exposure to high concentrations of THI led to a marked increase in glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities, whereas catalase (CAT) activity declined and malondialdehyde (MDA) levels rose, indicating the presence of oxidative stress. Moreover, THI upregulated the expression of the ER stress marker GRP78. Simultaneously, the mRNA levels of pivotal unfolded protein response genes, including AFT6, AFT4, IRE1α, CHOP, XBP1, and eIF2α, were significantly elevated in response to THI exposure. Furthermore, high concentrations of THI significantly activated the activities of caspase-3, caspase-8, and caspase-9 enzymes in the liver tissue. The expression of anti-apoptotic gene Bcl-2 was downregulated, whereas the pro-apoptotic genes Bax and caspase-3 were upregulated, leading to an increase in hepatic apoptotic cells following THI exposure. Collectively, our study indicates that THI can induce hepatic damage in turtles through the promotion of oxidative stress, ERS, and apoptosis. These findings gain a deeper understanding of the toxic effects of THI on keystone species in aquatic ecosystems, thereby improving our overall understanding of their environmental impacts.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70936","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70936","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Among neonicotinoid insecticides, thiacloprid (THI) is extensively utilized in agricultural practices, which poses a potential toxicity risk to aquatic fauna. Turtles, integral to aquatic ecosystems, have not yet been comprehensively assessed for their vulnerability to THI exposure. In this study, we aimed to evaluate the effects of THI on oxidative stress, endoplasmic reticulum stress (ERS), and apoptosis in aquatic turtles. We categorized Mauremys reevesii into three groups: a control group and two experimental groups exposed to environmentally relevant (4.5 μg/mL) and high (15 mg/mL) concentrations of THI, respectively. Transcriptome analysis revealed that genes significantly associated with the elimination of superoxide radicals, organelle inner membrane functions, peroxiredoxin activity, and apoptotic pathways were abundantly expressed in the high-concentration THI group. Notably, exposure to high concentrations of THI led to a marked increase in glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities, whereas catalase (CAT) activity declined and malondialdehyde (MDA) levels rose, indicating the presence of oxidative stress. Moreover, THI upregulated the expression of the ER stress marker GRP78. Simultaneously, the mRNA levels of pivotal unfolded protein response genes, including AFT6, AFT4, IRE1α, CHOP, XBP1, and eIF2α, were significantly elevated in response to THI exposure. Furthermore, high concentrations of THI significantly activated the activities of caspase-3, caspase-8, and caspase-9 enzymes in the liver tissue. The expression of anti-apoptotic gene Bcl-2 was downregulated, whereas the pro-apoptotic genes Bax and caspase-3 were upregulated, leading to an increase in hepatic apoptotic cells following THI exposure. Collectively, our study indicates that THI can induce hepatic damage in turtles through the promotion of oxidative stress, ERS, and apoptosis. These findings gain a deeper understanding of the toxic effects of THI on keystone species in aquatic ecosystems, thereby improving our overall understanding of their environmental impacts.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.