A novel biaxial shaking table and its performance when investigating seismic actions

IF 4.3 2区 工程技术 Q1 ENGINEERING, CIVIL
Rohit Tiwari, Arturo Jimenez, Adrian R. Russell
{"title":"A novel biaxial shaking table and its performance when investigating seismic actions","authors":"Rohit Tiwari,&nbsp;Arturo Jimenez,&nbsp;Adrian R. Russell","doi":"10.1002/eqe.4266","DOIUrl":null,"url":null,"abstract":"<p>The design of a new type of biaxial shaking table is presented. The shaking table is able to apply horizontal and vertical movements to models using two actuators. It is novel in that the two actuators are horizontally aligned, through its use of a scissor mechanism, and because of its compact design which permits simple anchorage to a laboratory strong floor. The scissor mechanism translates the movement of one of the actuators to a purely vertical movement at the table. The other actuator, which moves horizontally the scissor mechanism and its supports, causes the horizontal movement of the table. The horizontal and vertical movements are applied and controlled independently, individually or simultaneously. The capability of the shaking table to control and replicate a variety of uniaxial and biaxial movements is verified by conducting several shaking table experiments. This is done when the table is naked and when it supports a payload having a nonlinear dynamic response. Very good agreements between achieved and desired uniaxial and biaxial movements are attained. Rigidity of the scissor arm mechanism and connections, and preloaded roller bearings and rail blocks, are central to its success. Displacement errors, rolling, pitching and yawing of the table's top plate are negligible. The new table type is slightly more expensive than a uniaxial system, and substantially less expensive than a six degrees-of freedom system, meaning biaxial vertical and horizontal shaking capability can now be achieved in a laboratory at reasonable cost.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"54 2","pages":"437-448"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4266","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The design of a new type of biaxial shaking table is presented. The shaking table is able to apply horizontal and vertical movements to models using two actuators. It is novel in that the two actuators are horizontally aligned, through its use of a scissor mechanism, and because of its compact design which permits simple anchorage to a laboratory strong floor. The scissor mechanism translates the movement of one of the actuators to a purely vertical movement at the table. The other actuator, which moves horizontally the scissor mechanism and its supports, causes the horizontal movement of the table. The horizontal and vertical movements are applied and controlled independently, individually or simultaneously. The capability of the shaking table to control and replicate a variety of uniaxial and biaxial movements is verified by conducting several shaking table experiments. This is done when the table is naked and when it supports a payload having a nonlinear dynamic response. Very good agreements between achieved and desired uniaxial and biaxial movements are attained. Rigidity of the scissor arm mechanism and connections, and preloaded roller bearings and rail blocks, are central to its success. Displacement errors, rolling, pitching and yawing of the table's top plate are negligible. The new table type is slightly more expensive than a uniaxial system, and substantially less expensive than a six degrees-of freedom system, meaning biaxial vertical and horizontal shaking capability can now be achieved in a laboratory at reasonable cost.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earthquake Engineering & Structural Dynamics
Earthquake Engineering & Structural Dynamics 工程技术-工程:地质
CiteScore
7.20
自引率
13.30%
发文量
180
审稿时长
4.8 months
期刊介绍: Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following: ground motions for analysis and design geotechnical earthquake engineering probabilistic and deterministic methods of dynamic analysis experimental behaviour of structures seismic protective systems system identification risk assessment seismic code requirements methods for earthquake-resistant design and retrofit of structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信