{"title":"A Novel Micro-Thermophotovoltaic Combustor of Hydrogen–Air to Enable Ultra-Lean Combustion, High Thermal Output and NO Low Emissions","authors":"Zakaria Mansouri, Lina Chouichi, Salaheddine Azzouz, Abdelhakim Settar","doi":"10.1155/er/4352411","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study presents a novel micro-combustor (MC) design called micro-trapped vortex combustor (MTVC) for micro-thermophotovoltaic (MTPV) devices used in small-scale electricity generation. Traditional MC designs struggle to operate efficiently under ultra-lean regimes due to flame quenching, limiting their performance. The proposed MTVC incorporates the trapped vortex concept, inspired by aeronautical applications, to improve thermal performance and stability under ultra-lean conditions. Numerical simulations, using the Navier–Stokes and energy equations for laminar and reactive flow, are conducted to compare the MTVC with conventional micro-backward-step combustors (MBSCs) under hydrogen (H<sub>2</sub>)–air mixture combustion. The study focuses on key performance parameters such as temperature distribution, heat recirculation, flame shape, flow topology, radiative power and emissions. The results show that the MTVC can operate at an ultra-lean equivalence ratio of <i>Φ</i> = 0.5, while the MBSC experiences flame quenching below <i>Φ</i> = 0.7. The MTVC design achieves up to 26.51% higher radiative power and a 36% improvement in energy conversion efficiency compared to traditional combustor designs. Additionally, the MTVC produces 43% less nitrogen oxides (NOx) emissions, demonstrating its potential for both higher efficiency and reduced environmental impact in portable power applications.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/4352411","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/4352411","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel micro-combustor (MC) design called micro-trapped vortex combustor (MTVC) for micro-thermophotovoltaic (MTPV) devices used in small-scale electricity generation. Traditional MC designs struggle to operate efficiently under ultra-lean regimes due to flame quenching, limiting their performance. The proposed MTVC incorporates the trapped vortex concept, inspired by aeronautical applications, to improve thermal performance and stability under ultra-lean conditions. Numerical simulations, using the Navier–Stokes and energy equations for laminar and reactive flow, are conducted to compare the MTVC with conventional micro-backward-step combustors (MBSCs) under hydrogen (H2)–air mixture combustion. The study focuses on key performance parameters such as temperature distribution, heat recirculation, flame shape, flow topology, radiative power and emissions. The results show that the MTVC can operate at an ultra-lean equivalence ratio of Φ = 0.5, while the MBSC experiences flame quenching below Φ = 0.7. The MTVC design achieves up to 26.51% higher radiative power and a 36% improvement in energy conversion efficiency compared to traditional combustor designs. Additionally, the MTVC produces 43% less nitrogen oxides (NOx) emissions, demonstrating its potential for both higher efficiency and reduced environmental impact in portable power applications.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system