Estimating Extreme Drought Risk Through Classical and Bayesian Paradigms

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Touqeer Ahmad, Safoorah Sabir, Irshad Ahmad Arshad, Taha Hasan, Olayan Albalawi
{"title":"Estimating Extreme Drought Risk Through Classical and Bayesian Paradigms","authors":"Touqeer Ahmad,&nbsp;Safoorah Sabir,&nbsp;Irshad Ahmad Arshad,&nbsp;Taha Hasan,&nbsp;Olayan Albalawi","doi":"10.1002/joc.8705","DOIUrl":null,"url":null,"abstract":"<p>Drought poses significant challenges to both the environment and the economy, necessitating proactive mitigation strategies. This study introduces both classical and Bayesian Markov Chain Monte Carlo (MCMC) extreme value probabilistic models for quantifying drought risk. The models utilise the generalised extreme value (GEV) distribution to characterise the distribution of standardised precipitation index (SPI) and non-stationary standardised precipitation index (NSSPI) variables. Drought risk is probabilistically assessed across five regions in Baluchistan (a drought-prone area of Pakistan) over two 20-year periods per region. The study presents a novel approach in probabilistic quantification models, demonstrating slight performance improvement with the Bayesian MCMC paradigm, as evaluated by the continuously ranked probability scoring. Moreover, the application of the presented methodology can be extended to other climatic zones using Bayesian MCMC with informative priors constructed from historical records of the neighbouring regions.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"45 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8705","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8705","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Drought poses significant challenges to both the environment and the economy, necessitating proactive mitigation strategies. This study introduces both classical and Bayesian Markov Chain Monte Carlo (MCMC) extreme value probabilistic models for quantifying drought risk. The models utilise the generalised extreme value (GEV) distribution to characterise the distribution of standardised precipitation index (SPI) and non-stationary standardised precipitation index (NSSPI) variables. Drought risk is probabilistically assessed across five regions in Baluchistan (a drought-prone area of Pakistan) over two 20-year periods per region. The study presents a novel approach in probabilistic quantification models, demonstrating slight performance improvement with the Bayesian MCMC paradigm, as evaluated by the continuously ranked probability scoring. Moreover, the application of the presented methodology can be extended to other climatic zones using Bayesian MCMC with informative priors constructed from historical records of the neighbouring regions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信