Opportunities for biogas production from algal biomass

IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Thuane M Anacleto, Nathália B Soares, Diego-Caetano C de Lelis, Vinícius P de Oliveira, Alex Enrich-Prast
{"title":"Opportunities for biogas production from algal biomass","authors":"Thuane M Anacleto,&nbsp;Nathália B Soares,&nbsp;Diego-Caetano C de Lelis,&nbsp;Vinícius P de Oliveira,&nbsp;Alex Enrich-Prast","doi":"10.1002/bbb.2702","DOIUrl":null,"url":null,"abstract":"<p>Energy security is a critical global challenge in the transition to sustainable development. Anaerobic digestion (AD) offers a promising renewable energy solution that mitigates environmental impacts. Algae, as biomass feedstock, have shown significant potential for bioenergy production; however, their complex chemical composition poses challenges to the efficiency of the AD process. To address these limitations, various pretreatment methods have been applied to enhance biogas production. In this study, we performed a comprehensive meta-analysis to evaluate the effects of different pretreatments on methane (CH₄) yields from both microalgae and macroalgae. Our results demonstrate that biological, physical, and combined chemical–physical pretreatments significantly improve CH₄ production in microalgae, with increases of up to 141%, 125%, and 151%, respectively. For macroalgae, physical pretreatments were the most effective, leading to a 129% increase in CH₄ yield. We also estimate that utilizing just 10% of the global algal biomass production (3.6 Mt) could generate over 5.5 TWh y<sup>−1</sup> of energy. This potential could be doubled with the application of appropriate pretreatment strategies. These findings highlight the role of algae in advancing renewable energy production and contribute to the growing body of knowledge on optimizing AD processes for cleaner energy generation.</p>","PeriodicalId":55380,"journal":{"name":"Biofuels Bioproducts & Biorefining-Biofpr","volume":"19 1","pages":"163-173"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bbb.2702","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels Bioproducts & Biorefining-Biofpr","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bbb.2702","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Energy security is a critical global challenge in the transition to sustainable development. Anaerobic digestion (AD) offers a promising renewable energy solution that mitigates environmental impacts. Algae, as biomass feedstock, have shown significant potential for bioenergy production; however, their complex chemical composition poses challenges to the efficiency of the AD process. To address these limitations, various pretreatment methods have been applied to enhance biogas production. In this study, we performed a comprehensive meta-analysis to evaluate the effects of different pretreatments on methane (CH₄) yields from both microalgae and macroalgae. Our results demonstrate that biological, physical, and combined chemical–physical pretreatments significantly improve CH₄ production in microalgae, with increases of up to 141%, 125%, and 151%, respectively. For macroalgae, physical pretreatments were the most effective, leading to a 129% increase in CH₄ yield. We also estimate that utilizing just 10% of the global algal biomass production (3.6 Mt) could generate over 5.5 TWh y−1 of energy. This potential could be doubled with the application of appropriate pretreatment strategies. These findings highlight the role of algae in advancing renewable energy production and contribute to the growing body of knowledge on optimizing AD processes for cleaner energy generation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.10%
发文量
122
审稿时长
4.5 months
期刊介绍: Biofuels, Bioproducts and Biorefining is a vital source of information on sustainable products, fuels and energy. Examining the spectrum of international scientific research and industrial development along the entire supply chain, The journal publishes a balanced mixture of peer-reviewed critical reviews, commentary, business news highlights, policy updates and patent intelligence. Biofuels, Bioproducts and Biorefining is dedicated to fostering growth in the biorenewables sector and serving its growing interdisciplinary community by providing a unique, systems-based insight into technologies in these fields as well as their industrial development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信