Kinetic analysis on low-temperature oxidation of wood pellets by isothermal microcalorimetry

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Can Yao, Changdong Sheng
{"title":"Kinetic analysis on low-temperature oxidation of wood pellets by isothermal microcalorimetry","authors":"Can Yao,&nbsp;Changdong Sheng","doi":"10.1002/fam.3252","DOIUrl":null,"url":null,"abstract":"<p>Low-temperature chemical oxidation is the major driver of self-heating during storage of wood pellets and its kinetics is essential to describe the heat evolution. In the present work, isothermal microcalorimetry was used to characterize heat generation behavior of three types of wood pellets (pine, fir, and redwood pellets) at 30–70°C. The obtained data were employed to derive the kinetics of low-temperature oxidation by the peak power, iso-conversional method, and non-steady analysis. The consistency and applicability of the kinetics derived by the three methods were evaluated. Kinetic parameters determined by the peak power method were observed to match those from the iso-conversional method at lower conversions of the oxidation for heat generation. The kinetics derived by the iso-conversional method indicated the oxidation reactivity generally decreasing and activation energy increasing with the conversion because of O<sub>2</sub> consumption and reaction mechanism changing. With the impact of O<sub>2</sub> consumption considered separately, the kinetics from the non-steady analysis is capable of describing the evolution of heat power with the conversion and also consistent with that from the peak power method in describing intrinsic reactivity of pellet materials. The kinetics from the peak power and iso-conversional methods lump the impact of O<sub>2</sub> concentration with the reaction reactivity, suggesting their applications requiring additional models for connecting with O<sub>2</sub> consumption.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 1","pages":"116-124"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3252","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Low-temperature chemical oxidation is the major driver of self-heating during storage of wood pellets and its kinetics is essential to describe the heat evolution. In the present work, isothermal microcalorimetry was used to characterize heat generation behavior of three types of wood pellets (pine, fir, and redwood pellets) at 30–70°C. The obtained data were employed to derive the kinetics of low-temperature oxidation by the peak power, iso-conversional method, and non-steady analysis. The consistency and applicability of the kinetics derived by the three methods were evaluated. Kinetic parameters determined by the peak power method were observed to match those from the iso-conversional method at lower conversions of the oxidation for heat generation. The kinetics derived by the iso-conversional method indicated the oxidation reactivity generally decreasing and activation energy increasing with the conversion because of O2 consumption and reaction mechanism changing. With the impact of O2 consumption considered separately, the kinetics from the non-steady analysis is capable of describing the evolution of heat power with the conversion and also consistent with that from the peak power method in describing intrinsic reactivity of pellet materials. The kinetics from the peak power and iso-conversional methods lump the impact of O2 concentration with the reaction reactivity, suggesting their applications requiring additional models for connecting with O2 consumption.

Abstract Image

用等温微量热法分析木质颗粒低温氧化动力学
低温化学氧化是木屑颗粒储存过程中自热的主要驱动因素,其动力学对描述热演化至关重要。在本研究中,采用等温微热法对三种木屑颗粒(松木、冷杉和红木颗粒)在30-70℃下的产热行为进行了表征。采用峰值功率法、等转换法和非稳态分析等方法推导了低温氧化动力学。评价了三种方法得到的动力学结果的一致性和适用性。用峰值功率法测定的动力学参数在较低的氧化产热转化率下与等转换法测定的动力学参数相匹配。等转化动力学结果表明,随着氧化反应的进行,氧化反应活性普遍降低,活化能随着反应机理的改变而升高。在单独考虑氧气消耗影响的情况下,非稳态分析的动力学能够描述热功率随转化的演变,并且与峰值功率法描述球团材料的固有反应性的结果一致。从峰值功率和等转换方法得到的动力学将O2浓度的影响与反应活性混为一谈,这表明它们的应用需要额外的模型来连接O2消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fire and Materials
Fire and Materials 工程技术-材料科学:综合
CiteScore
4.60
自引率
5.30%
发文量
72
审稿时长
3 months
期刊介绍: Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals. Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信