On the long-time behavior of solutions to the Navier–Stokes–Fourier system on unbounded domains

IF 1 2区 数学 Q1 MATHEMATICS
Elisabetta Chiodaroli, Eduard Feireisl
{"title":"On the long-time behavior of solutions to the Navier–Stokes–Fourier system on unbounded domains","authors":"Elisabetta Chiodaroli,&nbsp;Eduard Feireisl","doi":"10.1112/jlms.70067","DOIUrl":null,"url":null,"abstract":"<p>We consider the Navier–Stokes–Fourier (NSF) system on an unbounded domain in the Euclidean space <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>3</mn>\n </msup>\n <annotation>$R^3$</annotation>\n </semantics></math>, supplemented by the far-field conditions for the phase variables, specifically: <span></span><math>\n <semantics>\n <mrow>\n <mi>ϱ</mi>\n <mo>→</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mspace></mspace>\n <mi>ϑ</mi>\n <mo>→</mo>\n <msub>\n <mi>ϑ</mi>\n <mi>∞</mi>\n </msub>\n <mo>,</mo>\n <mspace></mspace>\n <mi>u</mi>\n <mo>→</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\varrho \\rightarrow 0,\\ \\vartheta \\rightarrow \\vartheta _\\infty, \\ {\\bm u}\\rightarrow 0$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mspace></mspace>\n <mo>|</mo>\n <mi>x</mi>\n <mo>|</mo>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\ |x| \\rightarrow \\infty$</annotation>\n </semantics></math>. We study the long-time behavior of solutions and we prove that any global-in-time weak solution to the NSF system approaches the equilibrium <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ϱ</mi>\n <mi>s</mi>\n </msub>\n <mo>=</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mspace></mspace>\n <msub>\n <mi>ϑ</mi>\n <mi>s</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mi>ϑ</mi>\n <mi>∞</mi>\n </msub>\n <mo>,</mo>\n <mspace></mspace>\n <msub>\n <mi>u</mi>\n <mi>s</mi>\n </msub>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\varrho _s = 0,\\ \\vartheta _s = \\vartheta _\\infty,\\ {\\bm u}_s = 0$</annotation>\n </semantics></math> in the sense of ergodic averages for time tending to infinity. As a consequence of the convergence result combined with the total mass conservation, we can show that the total momentum of global-in-time weak solutions is never globally conserved.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70067","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Navier–Stokes–Fourier (NSF) system on an unbounded domain in the Euclidean space R 3 $R^3$ , supplemented by the far-field conditions for the phase variables, specifically: ϱ 0 , ϑ ϑ , u 0 $\varrho \rightarrow 0,\ \vartheta \rightarrow \vartheta _\infty, \ {\bm u}\rightarrow 0$ as | x | $\ |x| \rightarrow \infty$ . We study the long-time behavior of solutions and we prove that any global-in-time weak solution to the NSF system approaches the equilibrium ϱ s = 0 , ϑ s = ϑ , u s = 0 $\varrho _s = 0,\ \vartheta _s = \vartheta _\infty,\ {\bm u}_s = 0$ in the sense of ergodic averages for time tending to infinity. As a consequence of the convergence result combined with the total mass conservation, we can show that the total momentum of global-in-time weak solutions is never globally conserved.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信