Investigation of the Impact of Combustion Chamber Geometry on Engine Combustion and Emission Performance Under Various Fuel Injection Timings With Biodiesel Blending
{"title":"Investigation of the Impact of Combustion Chamber Geometry on Engine Combustion and Emission Performance Under Various Fuel Injection Timings With Biodiesel Blending","authors":"Dongge Wang, Guangyuan Bao, Chao He, Jiaqiang Li, Yanlin Chen, Longqing Zhao, Haisheng Yu","doi":"10.1002/ese3.2000","DOIUrl":null,"url":null,"abstract":"<p>This study uses AVL FIRE 2020 R1 software for simulation and experimental verification to deeply analyze the impact of combustion chamber geometry and biodiesel on diesel engine performance at different injection timings. The study found that: With the advancement of injection timing, the indicated fuel consumption rate, cylinder pressure and NO<i>x</i> emissions of the two combustion systems increased, while the indicated thermal efficiency, temperature and Soot emissions decreased accordingly; The blending of low calorific value biodiesel will increase the indicated fuel consumption rate of the two combustion systems, but at the same time it can effectively reduce NO<i>x</i> and Soot emissions; The T: Turbocharger, C: Charger air cooling, D: Diesel particle filter (TCD) combustion system improves the utilization rate of cylinder air due to its unique combustion chamber geometry, thereby improving combustion performance. Compared with the Omega combustion system, the indicated thermal efficiency of the TCD combustion system increased by 6.16% to 8.38% and the indicated fuel consumption rate decreased by 5.80% to 7.73% when burning four types of fuel. In addition, the in-cylinder pressure and temperature increased, and it performed better in reducing Soot emissions. The research results show that the TCD combustion system can effectively improve the combustion and emission performance of diesel engines, provide data support for the development of diesel engine combustion systems and the combustion of oxygen-containing fuels in plateau environments, and provide an important reference for energy conservation and emission reduction.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 1","pages":"268-289"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2000","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study uses AVL FIRE 2020 R1 software for simulation and experimental verification to deeply analyze the impact of combustion chamber geometry and biodiesel on diesel engine performance at different injection timings. The study found that: With the advancement of injection timing, the indicated fuel consumption rate, cylinder pressure and NOx emissions of the two combustion systems increased, while the indicated thermal efficiency, temperature and Soot emissions decreased accordingly; The blending of low calorific value biodiesel will increase the indicated fuel consumption rate of the two combustion systems, but at the same time it can effectively reduce NOx and Soot emissions; The T: Turbocharger, C: Charger air cooling, D: Diesel particle filter (TCD) combustion system improves the utilization rate of cylinder air due to its unique combustion chamber geometry, thereby improving combustion performance. Compared with the Omega combustion system, the indicated thermal efficiency of the TCD combustion system increased by 6.16% to 8.38% and the indicated fuel consumption rate decreased by 5.80% to 7.73% when burning four types of fuel. In addition, the in-cylinder pressure and temperature increased, and it performed better in reducing Soot emissions. The research results show that the TCD combustion system can effectively improve the combustion and emission performance of diesel engines, provide data support for the development of diesel engine combustion systems and the combustion of oxygen-containing fuels in plateau environments, and provide an important reference for energy conservation and emission reduction.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.