Md Zakir Hossain, Max L. Feuerstein, Benedikt Warth
{"title":"The role of residual (veterinary) antibiotics in chemical exposome analysis: Current progress and future perspectives","authors":"Md Zakir Hossain, Max L. Feuerstein, Benedikt Warth","doi":"10.1111/1541-4337.70105","DOIUrl":null,"url":null,"abstract":"<p>Humans are exposed to a complex mixture of environmental and food-related chemicals throughout their lifetime. Exposome research intends to explore the nongenetic, that is, environmental causes of chronic disease and their interactions comprehensively. Residual antibiotics can enter the human body through therapeutics, foods of animal origin, aquatic products, or drinking water. In the last decade, significant levels of residual antibiotics in human urine have been described, demonstrating frequent exposure throughout populations. To which extent they contribute to human health risks is debated. Human biomonitoring (HBM) aims to determine and quantify concentrations of xenobiotics in human specimens and provides the toolbox to monitor exposure to diverse chemical exposures. Due to their public health implications, priority-listed xenobiotics are routinely monitored in the European Union and other countries. However, antibiotics, an important class of (food-derived) xenobiotics, are still not systematically investigated for a better and more holistic understanding in the context of exposomics. This review provides a comprehensive summary of HBM research related to antibiotics, existing liquid chromatography–mass spectrometry (LC–MS)-based analytical methods, and potential health risks caused by unintended exposure. Incorporating antibiotics into the chemical exposome framework through routine HBM using multiclass analytical methods will provide a better understanding of the toxicological or pharmacological mixture effects and, ultimately, the chemical exposome.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 2","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1541-4337.70105","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.70105","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Humans are exposed to a complex mixture of environmental and food-related chemicals throughout their lifetime. Exposome research intends to explore the nongenetic, that is, environmental causes of chronic disease and their interactions comprehensively. Residual antibiotics can enter the human body through therapeutics, foods of animal origin, aquatic products, or drinking water. In the last decade, significant levels of residual antibiotics in human urine have been described, demonstrating frequent exposure throughout populations. To which extent they contribute to human health risks is debated. Human biomonitoring (HBM) aims to determine and quantify concentrations of xenobiotics in human specimens and provides the toolbox to monitor exposure to diverse chemical exposures. Due to their public health implications, priority-listed xenobiotics are routinely monitored in the European Union and other countries. However, antibiotics, an important class of (food-derived) xenobiotics, are still not systematically investigated for a better and more holistic understanding in the context of exposomics. This review provides a comprehensive summary of HBM research related to antibiotics, existing liquid chromatography–mass spectrometry (LC–MS)-based analytical methods, and potential health risks caused by unintended exposure. Incorporating antibiotics into the chemical exposome framework through routine HBM using multiclass analytical methods will provide a better understanding of the toxicological or pharmacological mixture effects and, ultimately, the chemical exposome.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.