A Turn-On Fluorescence Probe for Rapidly Sensing Exogenous and Endogenous Hydrogen Peroxide in Living Cells

IF 1.9 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Zixuan Ding, Xianlin He, Jianan Huang, Ruqi Zhang, Yanting Song, Haimei Yang
{"title":"A Turn-On Fluorescence Probe for Rapidly Sensing Exogenous and Endogenous Hydrogen Peroxide in Living Cells","authors":"Zixuan Ding,&nbsp;Xianlin He,&nbsp;Jianan Huang,&nbsp;Ruqi Zhang,&nbsp;Yanting Song,&nbsp;Haimei Yang","doi":"10.1002/slct.202405541","DOIUrl":null,"url":null,"abstract":"<p>Monitoring abnormal changes in hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) levels in mammalian cells is essential to understanding its physicochemical functions in biological systems. Generally, H<sub>2</sub>O<sub>2</sub> fluorescent probes used for intracellular monitoring are limited to the long response time and low sensitivity. Herein, the 1,8-naphthimide-based fluorescent probe (NPB) with excellent photostability was confirmed to be an H<sub>2</sub>O<sub>2</sub> specific probe due to the oxidation of borate ester to phenol. Compared with previously reported molecular probes, NPB displayed improved performance in H<sub>2</sub>O<sub>2</sub> detection, such as excellent photostability, good anti-interference, high selectivity, fast response (10 s), and low detection limit (15 nM). Furthermore, the most outstanding advantage of the as-prepared NPB was mitochondrial-targeting ability with a Pearson's colocalization coefficient of 0.91. Meanwhile, the probe NPB with excellent biocompatibility was successfully utilized for imaging exogenous and endogenous H<sub>2</sub>O<sub>2</sub> in living cells. The sensing mechanism of NPB to H<sub>2</sub>O<sub>2</sub> was further carefully demonstrated and proposed to involve the oxidation of borate to phenol by H₂O₂. We anticipated that the as-prepared NPB should have broad application in chemical analysis and reveal the physiological function of H<sub>2</sub>O<sub>2</sub> in vivo.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202405541","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring abnormal changes in hydrogen peroxide (H2O2) levels in mammalian cells is essential to understanding its physicochemical functions in biological systems. Generally, H2O2 fluorescent probes used for intracellular monitoring are limited to the long response time and low sensitivity. Herein, the 1,8-naphthimide-based fluorescent probe (NPB) with excellent photostability was confirmed to be an H2O2 specific probe due to the oxidation of borate ester to phenol. Compared with previously reported molecular probes, NPB displayed improved performance in H2O2 detection, such as excellent photostability, good anti-interference, high selectivity, fast response (10 s), and low detection limit (15 nM). Furthermore, the most outstanding advantage of the as-prepared NPB was mitochondrial-targeting ability with a Pearson's colocalization coefficient of 0.91. Meanwhile, the probe NPB with excellent biocompatibility was successfully utilized for imaging exogenous and endogenous H2O2 in living cells. The sensing mechanism of NPB to H2O2 was further carefully demonstrated and proposed to involve the oxidation of borate to phenol by H₂O₂. We anticipated that the as-prepared NPB should have broad application in chemical analysis and reveal the physiological function of H2O2 in vivo.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信