A generalized extreme value approach for the analysis of stationary climatic covariate in a Mediterranean city

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Cherif Semia
{"title":"A generalized extreme value approach for the analysis of stationary climatic covariate in a Mediterranean city","authors":"Cherif Semia","doi":"10.1002/asl.1291","DOIUrl":null,"url":null,"abstract":"<p>Extreme value theory (EVT) is used as univariate extreme value analysis (EVA) in order to analyze and model the covariates temperature, relative humidity (RH) and the thermal comfort index (humidex) issued from a dataset of 38 years in Tunis. It is a South Mediterranean area known as a hotspot for climate change. The best approach is to reduce the data considerably by taking annual block maxima from mean monthly data. It will converge to a generalized extreme value distribution in order to estimate the return levels of the studied parameters. The stationarity of the series are checked by augmented Dickey-Fuller test. The modeling of the three parameters shows a Weibull distribution pattern. The extreme/maximum monthly means temperature of 30.2°C and humidex of 39.4 have a common return level between 300 and 350 years. The highest mean monthly RH of 86.0% is expected to be exceeded every 50 years. For the next 38 years, the maxima monthly mean temperatures are expected to be stable, and the maxima monthly mean RH values, as well as the humidex monthly mean maxima are expected to decrease. The percentile air temperature hot day (TX90p) and night (TN90p) indices show globally linear upward trends and the ones of cold days (TX10p) and cold nights (TN10p) have a downward trend. The diurnal yearly temperature range shows an almost flat trend for its evolution through the years of study.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"26 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1291","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1291","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Extreme value theory (EVT) is used as univariate extreme value analysis (EVA) in order to analyze and model the covariates temperature, relative humidity (RH) and the thermal comfort index (humidex) issued from a dataset of 38 years in Tunis. It is a South Mediterranean area known as a hotspot for climate change. The best approach is to reduce the data considerably by taking annual block maxima from mean monthly data. It will converge to a generalized extreme value distribution in order to estimate the return levels of the studied parameters. The stationarity of the series are checked by augmented Dickey-Fuller test. The modeling of the three parameters shows a Weibull distribution pattern. The extreme/maximum monthly means temperature of 30.2°C and humidex of 39.4 have a common return level between 300 and 350 years. The highest mean monthly RH of 86.0% is expected to be exceeded every 50 years. For the next 38 years, the maxima monthly mean temperatures are expected to be stable, and the maxima monthly mean RH values, as well as the humidex monthly mean maxima are expected to decrease. The percentile air temperature hot day (TX90p) and night (TN90p) indices show globally linear upward trends and the ones of cold days (TX10p) and cold nights (TN10p) have a downward trend. The diurnal yearly temperature range shows an almost flat trend for its evolution through the years of study.

Abstract Image

地中海城市平稳气候协变量分析的广义极值法
利用极值理论(EVT)作为单变量极值分析(EVA),对突尼斯38年数据集的协变量温度、相对湿度(RH)和热舒适指数(humidex)进行了分析和建模。它位于地中海南部,是气候变化的热点地区。最好的方法是通过从平均月度数据中取年度块最大值来大大减少数据。为了估计所研究参数的回归水平,它将收敛到一个广义极值分布。用增广Dickey-Fuller检验检验了序列的平稳性。三个参数的建模均呈威布尔分布。极端/最高月平均气温为30.2°C,湿度为39.4°C,在300至350年之间有共同的回归水平。最高平均月相对湿度为86.0%,预计每50年超过一次。未来38年,最大月平均气温将保持稳定,最大月平均RH值和湿度月平均最大值将减小。全球百分位气温热日指数(TX90p)和夜指数(TN90p)呈线性上升趋势,冷日指数(TX10p)和冷夜指数(TN10p)呈下降趋势。历年气温日较差的演变基本呈平缓趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信