Javad Soleimani, Reza Farhangi, Gunes Karabulut Kurt
{"title":"Complex network control and stability through distributed critic-based neuro-fuzzy learning","authors":"Javad Soleimani, Reza Farhangi, Gunes Karabulut Kurt","doi":"10.1049/cth2.12773","DOIUrl":null,"url":null,"abstract":"<p>Inspired by advancements in swarm autonomous vehicles and intelligent control systems, this research addresses the issue of frequency synchronization and phase tracking in oscillator networks. A novel distributed consensus protocol and a reinforcement learning algorithm for a multi-agent network with a leader–follower topology, considering stability conditions, are developed. The critic-based neuro-fuzzy learning (CBNFL) method aims to achieve consensus and minimize local tracking errors. Additionally, an explicit synchronization condition for the network using the Lyapunov theorem is derived. Each vehicle tracks its reference phase and frequency. Employing a fuzzy critic to evaluate the current state and generate a stress signal for the controller, the method prompts adaptive parameter adjustments to minimize this signal. The proposed design's versatility and adaptability to various networks demonstrate robustness against dynamic vehicle properties and network parameter uncertainties, ensuring consistent controller performance. This approach exhibits high scalability, accommodating numerous autonomous agents. To validate the proposed learning method's efficacy, numerical simulations are conducted on a network of five oscillators. The outcomes of implementing CBNFL compared with a conventional PI controller underscore the CBNFL method's superior performance and robustness in maintaining network stability and achieving synchronization.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12773","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12773","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by advancements in swarm autonomous vehicles and intelligent control systems, this research addresses the issue of frequency synchronization and phase tracking in oscillator networks. A novel distributed consensus protocol and a reinforcement learning algorithm for a multi-agent network with a leader–follower topology, considering stability conditions, are developed. The critic-based neuro-fuzzy learning (CBNFL) method aims to achieve consensus and minimize local tracking errors. Additionally, an explicit synchronization condition for the network using the Lyapunov theorem is derived. Each vehicle tracks its reference phase and frequency. Employing a fuzzy critic to evaluate the current state and generate a stress signal for the controller, the method prompts adaptive parameter adjustments to minimize this signal. The proposed design's versatility and adaptability to various networks demonstrate robustness against dynamic vehicle properties and network parameter uncertainties, ensuring consistent controller performance. This approach exhibits high scalability, accommodating numerous autonomous agents. To validate the proposed learning method's efficacy, numerical simulations are conducted on a network of five oscillators. The outcomes of implementing CBNFL compared with a conventional PI controller underscore the CBNFL method's superior performance and robustness in maintaining network stability and achieving synchronization.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.