Tobias Schulze, Oliver Rauh, Gerhard Thiel, Niels Fertig, Andre Bazzone, Christian Grimm
{"title":"Unraveling pH Regulation of TMEM175, an Endolysosomal Cation Channel With a Role in Parkinson's Disease","authors":"Tobias Schulze, Oliver Rauh, Gerhard Thiel, Niels Fertig, Andre Bazzone, Christian Grimm","doi":"10.1002/jcp.70008","DOIUrl":null,"url":null,"abstract":"<p>Transmembrane protein 175 (TMEM175) is an endolysosomal cation channel, which has attracted much attention recently from academics and the pharmaceutical industry alike since human mutations in TMEM175 were found to be associated with the development of Parkinson's disease (PD). Thus, gain-of-function mutations were identified, which reduce and loss-of-function mutations, which increase the risk of developing PD. After having been characterized as an endolysosomal potassium channel initially, soon after TMEM175 was claimed to act as a proton channel. In fact, recent evidence suggests that depending on the conditions, TMEM175 can act as either a potassium or proton channel, without acting as an antiporter or exchanger. A recent work has now identified amino acid H57 to be directly involved in gating, increasing proton conductance of the channel while leaving the potassium conductance unaffected. We review here the current knowledge of TMEM175 function, pharmacology, physiology, and pathophysiology. We discuss the potential of this ion channel as a novel drug target for the treatment of neurodegenerative diseases such as PD, and we discuss the discovery of H57 as proton sensor.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 2","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcp.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70008","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transmembrane protein 175 (TMEM175) is an endolysosomal cation channel, which has attracted much attention recently from academics and the pharmaceutical industry alike since human mutations in TMEM175 were found to be associated with the development of Parkinson's disease (PD). Thus, gain-of-function mutations were identified, which reduce and loss-of-function mutations, which increase the risk of developing PD. After having been characterized as an endolysosomal potassium channel initially, soon after TMEM175 was claimed to act as a proton channel. In fact, recent evidence suggests that depending on the conditions, TMEM175 can act as either a potassium or proton channel, without acting as an antiporter or exchanger. A recent work has now identified amino acid H57 to be directly involved in gating, increasing proton conductance of the channel while leaving the potassium conductance unaffected. We review here the current knowledge of TMEM175 function, pharmacology, physiology, and pathophysiology. We discuss the potential of this ion channel as a novel drug target for the treatment of neurodegenerative diseases such as PD, and we discuss the discovery of H57 as proton sensor.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.